Residential College | false |
Status | 已發表Published |
A fast spatial clustering method for sparse lidar point clouds using GPU programming | |
Tian,Yifei1,2; Song,Wei1,3; Chen,Long2; Sung,Yunsick4; Kwak,Jeonghoon4; Sun,Su5 | |
2020-04-18 | |
Source Publication | Sensors (Switzerland) |
ISSN | 1424-8220 |
Volume | 20Issue:8Pages:2309 |
Abstract | Fast and accurate obstacle detection is essential for accurate perception of mobile vehicles’ environment. Because point clouds sensed by light detection and ranging (LiDAR) sensors are sparse and unstructured, traditional obstacle clustering on raw point clouds are inaccurate and time consuming. Thus, to achieve fast obstacle clustering in an unknown terrain, this paper proposes an elevation-reference connected component labeling (ER-CCL) algorithm using graphic processing unit (GPU) programing. LiDAR points are first projected onto a rasterized x–z plane so that sparse points are mapped into a series of regularly arranged small cells. Based on the height distribution of the LiDAR point, the ground cells are filtered out and a flag map is generated. Next, the ER-CCL algorithm is implemented on the label map generated from the flag map to mark individual clusters with unique labels. Finally, obstacle labeling results are inverse transformed from the x–z plane to 3D points to provide clustering results. For real-time 3D point cloud clustering, ER-CCL is accelerated by running it in parallel with the aid of GPU programming technology. |
Keyword | 3d Spatial Clustering Connected Component Labeling Gpu Programming Lidar |
DOI | 10.3390/s20082309 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Chemistry ; Engineering ; Instruments & Instrumentation |
WOS ID | WOS:000533346400151 |
Scopus ID | 2-s2.0-85083638924 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE |
Corresponding Author | Song,Wei |
Affiliation | 1.North China University of Technology 2.University of Macau 3.Beijing Key Lab on Urban Intelligent Traffic Control Technology,Beijing,100144,China 4.Dongguk University 5.Purdue University |
First Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Tian,Yifei,Song,Wei,Chen,Long,et al. A fast spatial clustering method for sparse lidar point clouds using GPU programming[J]. Sensors (Switzerland), 2020, 20(8), 2309. |
APA | Tian,Yifei., Song,Wei., Chen,Long., Sung,Yunsick., Kwak,Jeonghoon., & Sun,Su (2020). A fast spatial clustering method for sparse lidar point clouds using GPU programming. Sensors (Switzerland), 20(8), 2309. |
MLA | Tian,Yifei,et al."A fast spatial clustering method for sparse lidar point clouds using GPU programming".Sensors (Switzerland) 20.8(2020):2309. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment