UM  > Institute of Chinese Medical Sciences
Residential Collegefalse
Status已發表Published
Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke
Liu, Bowen1; Li, Yiyang1; Han, Yan1; Wang, Shengpeng1; Yang, Hua2; Zhao, Yonghua1; Li, Ping2; Wang, Yitao1
2021-09-01
Source PublicationPHYTOMEDICINE
ISSN0944-7113
Volume90Pages:153660
Abstract

Background: The leakage of blood-brain barrier (BBB) is main pathophysiological change in acute stage of ischemic stroke, which not only deteriorates neurological function, but also increases the risk of hemorrhagic transformation after thrombolysis. Purpose/Study Design: This article investigates the efficacy of Notoginsenoside R1, an active ingredient of Panax notoginseng, on BBB permeability and explores related mechanisms after acute ischemic stroke. Methods: In vivo, male Sprague-Dawley rats (260–280 g) were selected and randomly divided into 6 groups: sham group, model group, low, middle and high doses of Notoginsenoside R1 groups and positive drug Dl-3-n-Butylphthalide group. Except for sham group, rats were performed with permanent middle cerebral artery occlusion model in each group. Twelve hours later, rats were evaluated for Bederson neurological function, and BBB integrity by Evans blue leak imaging; Triphenyltetrazolium chloride staining was used to detect the volume of cerebral infarction. Frozen sections of rats’ brain tissue were prepared for detection of MMPs activity in situ zymography. Peripheral tissue of cerebral infarction was collected and tested the expression of MMP2, 9 and tight junction proteins (zo1, claudin5, occludin) by western blot. In vitro, transwell endothelial barrier model was established by bEnd.3 cells. Oxygen glucose deprivation (OGD) was chosen to simulate the hypoxic environment. Suitable OGD stimulation time as well as Notoginsenoside R1 and Dl-3-n-Butylphthalide optimal dose concentrations were determined through transwell leakage and CCK8 assay. Furthermore, endothelial subcellular component proteins were extracted. The change of zo1, claudin5, occludin and caveolin1 was detected by western blot. Results: Notoginsenoside R1 treatment significantly reduced BBB leakage and cerebral infarction volume, weakened neurological deficits in post-stroke rats. Moreover, it inhibited the activity of MMPs in infarcted cortex and striatum, down-regulated MMP2, 9 and up-regulated zo1 and claudin5 expressions in penumbra. In vitro, Notoginsenoside R1 treatment decreased OGD-induced endothelial barrier permeability, restored expressions of zo1, claudin5 on cellular membrane and cytoplasm, as well as mediated membrane redistribution of occludin and caveolin1 from actin cytoskeletal fraction. Conclusions: Notoginsenoside R1 treatment attenuates BBB permeability, cerebral infarction volume and neurological impairments in rats with acute cerebral ischemia. The mechanisms might be related to intervening degradation and redistribution of zo1, caludin5 and occludin by caveolin1/ MMP2/9 pathway. More effects and mechanisms of Notoginsenoside R1 on rehabilitation of stroke are worthy to be explored in the future.

KeywordAcute Ischemic Stroke Blood-brain Barrier Caveolin1/mmp2/9 Pathway Notoginsenoside R1 Tight Junctions
DOI10.1016/j.phymed.2021.153660
URLView the original
Indexed BySCIE
Language英語English
WOS Research AreaPlant Sciences ; Integrative & Complementary Medicine ; Pharmacology & Pharmacy
WOS SubjectPlant Sciences ; Chemistry, Medicinal ; Integrative & Complementary Medicine ; Pharmacology & Pharmacy
WOS IDWOS:000685219400032
PublisherELSEVIER GMBH, HACKERBRUCKE 6, 80335 MUNICH, GERMANY
Scopus ID2-s2.0-85111601022
Fulltext Access
Citation statistics
Document TypeJournal article
CollectionInstitute of Chinese Medical Sciences
THE STATE KEY LABORATORY OF QUALITY RESEARCH IN CHINESE MEDICINE (UNIVERSITY OF MACAU)
Co-First AuthorLiu, Bowen
Corresponding AuthorZhao, Yonghua; Wang, Yitao
Affiliation1.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
2.State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
First Author AffilicationInstitute of Chinese Medical Sciences
Corresponding Author AffilicationInstitute of Chinese Medical Sciences
Recommended Citation
GB/T 7714
Liu, Bowen,Li, Yiyang,Han, Yan,et al. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke[J]. PHYTOMEDICINE, 2021, 90, 153660.
APA Liu, Bowen., Li, Yiyang., Han, Yan., Wang, Shengpeng., Yang, Hua., Zhao, Yonghua., Li, Ping., & Wang, Yitao (2021). Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. PHYTOMEDICINE, 90, 153660.
MLA Liu, Bowen,et al."Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke".PHYTOMEDICINE 90(2021):153660.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Liu, Bowen]'s Articles
[Li, Yiyang]'s Articles
[Han, Yan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Bowen]'s Articles
[Li, Yiyang]'s Articles
[Han, Yan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Bowen]'s Articles
[Li, Yiyang]'s Articles
[Han, Yan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.