Residential College | false |
Status | 已發表Published |
An Image-Based Benchmark Dataset and a Novel Object Detector for Water Surface Object Detection | |
Zhou, Zhiguo1; Sun, Jiaen1; Yu, Jiabao1; Liu, Kaiyuan1; Duan, Junwei2; Chen, Long3; Chen, C. L.Philip4 | |
2021-09-24 | |
Source Publication | Frontiers in Neurorobotics |
ISSN | 1662-5218 |
Volume | 15Pages:723336 |
Other Abstract | Water surface object detection is one of the most significant tasks in autonomous driving and water surface vision applications. To date, existing public large-scale datasets collected from websites do not focus on specific scenarios. As a characteristic of these datasets, the quantity of the images and instances is also still at a low level. To accelerate the development of water surface autonomous driving, this paper proposes a large-scale, high-quality annotated benchmark dataset, named Water Surface Object Detection Dataset (WSODD), to benchmark different water surface object detection algorithms. The proposed dataset consists of 7,467 water surface images in different water environments, climate conditions, and shooting times. In addition, the dataset comprises a total of 14 common object categories and 21,911 instances. Simultaneously, more specific scenarios are focused on in WSODD. In order to find a straightforward architecture to provide good performance on WSODD, a new object detector, named CRB-Net, is proposed to serve as a baseline. In experiments, CRB-Net was compared with 16 state-of-the-art object detection methods and outperformed all of them in terms of detection precision. In this paper, we further discuss the effect of the dataset diversity (e.g., instance size, lighting conditions), training set size, and dataset details (e.g., method of categorization). Cross-dataset validation shows that WSODD significantly outperforms other relevant datasets and that the adaptability of CRB-Net is excellent. |
Keyword | Surface Object Detection Dataset Detector Baseline Cross-dataset Validation |
DOI | 10.3389/fnbot.2021.723336 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Computer Science ; Robotics ; Neurosciences & Neurology |
WOS Subject | Computer Science, Artificial Intelligence ; Robotics ; Neurosciences |
WOS ID | WOS:000704565100001 |
Publisher | FRONTIERS MEDIA SA, AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE CH-1015, SWITZERLAND |
Scopus ID | 2-s2.0-85116895167 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE |
Corresponding Author | Zhou, Zhiguo; Duan, Junwei |
Affiliation | 1.School of Information and Electronics, Beijing Institute of Technology, Beijing, China 2.College of Information Science and Technology, Jinan University, Guangzhou, China 3.Faculty of Science and Technology, University of Macau, Taipa, Macao 4.School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
Recommended Citation GB/T 7714 | Zhou, Zhiguo,Sun, Jiaen,Yu, Jiabao,et al. An Image-Based Benchmark Dataset and a Novel Object Detector for Water Surface Object Detection[J]. Frontiers in Neurorobotics, 2021, 15, 723336. |
APA | Zhou, Zhiguo., Sun, Jiaen., Yu, Jiabao., Liu, Kaiyuan., Duan, Junwei., Chen, Long., & Chen, C. L.Philip (2021). An Image-Based Benchmark Dataset and a Novel Object Detector for Water Surface Object Detection. Frontiers in Neurorobotics, 15, 723336. |
MLA | Zhou, Zhiguo,et al."An Image-Based Benchmark Dataset and a Novel Object Detector for Water Surface Object Detection".Frontiers in Neurorobotics 15(2021):723336. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment