Residential College | false |
Status | 已發表Published |
Curcumin prevents As3+-induced carcinogenesis through regulation of GSK3β/Nrf2 | |
Dang, Yuan Ye1; Luo, Hua2; Li, Yong Mei1; Zhou, Yang1; Luo, Xiu1; Lin, Shui Mu1; Liu, Shou Ping1; Lee, Simon Ming Yuen2; Li, Chu Wen1; Dai, Xiao Yan1 | |
2021-12-01 | |
Source Publication | Chinese Medicine |
ISSN | 1749-8546 |
Volume | 16Issue:1 |
Abstract | Background: Arsenic (As) is a carcinogen with considerable environmental and occupational relevancy. Its mechanism of action and methods of prevention remain to be investigated. Previous studies have demonstrated that ROS is responsible for As-induced cell transformation, which is considered as the first stage of As carcinogenesis. The NF-E2 p45-related factor-2 (Nrf2) signaling pathway regulates the cellular antioxidant response, and activation of Nrf2 has recently been shown to limit oxidative damage following exposure to As Methods and results: In this study, molecular docking was used to virtually screen natural antioxidant chemical databases and identify molecules that interact with the ligand-binding site of Keap1 (PDB code 4L7B). The cell-based assays and molecular docking findings revealed that curcumin has the best inhibitory activity against Keap1-4L7B. Co-immunoprecipitation (Co-IP) results indicated that curcumin is a potent Keap1 Kelch domain-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. The increased activation of Nrf2 and its target antioxidant genes by curcumin could significantly decrease As-generated ROS. Moreover, curcumin induced autophagy in As-treated BEAS-2B via inducing autophagy by the formation of a p62/LC-3 complex and increasing autophagic flux by promoting transcription factor EB (TFEB) and lysosome-associated membrane protein 1 (LAMP1) expression. Knockdown of Nrf2 abolished curcumin-induced autophagy and downregulated ROS. Further studies showed that inhibition of autophagosome and lysosome fusion with bafilomycin a1 (BafA1) could block curcumin and prevented As-induced cell transformation. These results demonstrated that curcumin prevents As-induced cell transformation by inducing autophagy via the activation of the Nrf2 signaling pathway in BEAS-2B cells. However, overexpression of Keap-1 showed a constitutively high level of Nrf2 in As-transformed BEAS-2B cells (AsT) is Keap1-independent regulation. Overexpression of Nrf2 in AsT demonstrated that curcumin increased ROS levels and induced cell apoptosis via the downregulation of Nrf2. Further studies showed that curcumin decreased the Nrf2 level in AsT by activating GSK-3β to inhibit the activation of PI3K/AKT. Co-IP assay results showed that curcumin promoted the interaction of Nrf2 with the GSK-3β/β-TrCP axis and ubiquitin. Moreover, the inhibition of GSK-3β reversed Nrf2 expression in curcumin-treated AsT, indicating that the decrease in Nrf2 is due to activation of the GSK-3β/β-TrCP ubiquitination pathway. Furthermore, in vitro and in vivo results showed that curcumin induced cell apoptosis, and had anti-angiogenesis and anti-tumorigenesis effects as a result of activating the GSK-3β/β-TrCP ubiquitination pathway and subsequent decrease in Nrf2. Conclusions: Taken together, in the first stage, curcumin activated Nrf2, decreased ROS, and induced autophagy in normal cells to prevent As-induced cell transformation. In the second stage, curcumin promoted ROS and apoptosis and inhibited angiogenesis via inhibition of constitutive expression of Nrf2 in AsT to prevent tumorigenesis. Our results suggest that antioxidant natural compounds such as curcumin can be evaluated as potential candidates for complementary therapies in the treatment of As-induced carcinogenesis. |
Keyword | Arsenic Autophagy Carcinogenesis Curcumin Gsk-3β/β-trcp Nrf2 Ros |
DOI | 10.1186/s13020-021-00527-x |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Integrative & Complementary Medicine ; Pharmacology & Pharmacy |
WOS Subject | Integrative & Complementary Medicine ; Pharmacology & Pharmacy |
WOS ID | WOS:000716940900002 |
Scopus ID | 2-s2.0-85118953816 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF PHARMACEUTICAL SCIENCES Institute of Chinese Medical Sciences THE STATE KEY LABORATORY OF QUALITY RESEARCH IN CHINESE MEDICINE (UNIVERSITY OF MACAU) |
Corresponding Author | Li, Chu Wen; Dai, Xiao Yan |
Affiliation | 1.The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China 2.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao |
Recommended Citation GB/T 7714 | Dang, Yuan Ye,Luo, Hua,Li, Yong Mei,et al. Curcumin prevents As3+-induced carcinogenesis through regulation of GSK3β/Nrf2[J]. Chinese Medicine, 2021, 16(1). |
APA | Dang, Yuan Ye., Luo, Hua., Li, Yong Mei., Zhou, Yang., Luo, Xiu., Lin, Shui Mu., Liu, Shou Ping., Lee, Simon Ming Yuen., Li, Chu Wen., & Dai, Xiao Yan (2021). Curcumin prevents As3+-induced carcinogenesis through regulation of GSK3β/Nrf2. Chinese Medicine, 16(1). |
MLA | Dang, Yuan Ye,et al."Curcumin prevents As3+-induced carcinogenesis through regulation of GSK3β/Nrf2".Chinese Medicine 16.1(2021). |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment