UM

Browse/Search Results:  1-10 of 11 Help

Selected(0)Clear Items/Page:    Sort:
A numerical study of integrated linear reconstruction for steady Euler equations based on finite volume scheme Journal article
Hu, Guanghui, Li, Ruo, Meng, Xucheng. A numerical study of integrated linear reconstruction for steady Euler equations based on finite volume scheme[J]. Advances in Applied Mathematics and Mechanics, 2024, 16, 279-304.
Authors:  Hu, Guanghui;  Li, Ruo;  Meng, Xucheng
Favorite |   IF:1.5/1.1 | Submit date:2023/08/31
An SAV Method for Imaginary Time Gradient Flow Model in Density Functional Theory Journal article
WANG TING, ZHOU JIE, HU GUANGHUI. An SAV Method for Imaginary Time Gradient Flow Model in Density Functional Theory[J]. Advances in Applied Mathematics and Mechanics, 2023.
Authors:  WANG TING;  ZHOU JIE;  HU GUANGHUI
Favorite |   IF:1.5/1.1 | Submit date:2023/08/31
An SAV Method for Imaginary Time Gradient Flow Model in Density Functional Theory Journal article
Wang, Ting, Zhou, Jie, Hu, Guanghui. An SAV Method for Imaginary Time Gradient Flow Model in Density Functional Theory[J]. Advances in Applied Mathematics and Mechanics, 2023, 15(3), 719-736.
Authors:  Wang, Ting;  Zhou, Jie;  Hu, Guanghui
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.5/1.1 | Submit date:2023/07/19
Density Functional Theory  Gradient Flow  Orthonormalization Free  Scalar Auxiliary Variable  Unconditional Energy Stability  
An h-adaptive finite element solution of the relaxation non-equilibrium model for gravity-driven fingers Journal article
Bian, Huanying, Shen, Yedan, Hu, Guanghui. An h-adaptive finite element solution of the relaxation non-equilibrium model for gravity-driven fingers[J]. Advances in Applied Mathematics and Mechanics, 2021, 13(6), 1418-1440.
Authors:  Bian, Huanying;  Shen, Yedan;  Hu, Guanghui
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.5/1.1 | Submit date:2022/05/13
a Posteriori Error Estimation  Fingering Phenomenon  H-adaptive Mesh Method  Non-equilibrium Richard Equation  Porous Media Flow  
An h -Adaptive Finite Element Solution of the Relaxation Non-Equilibrium Model for Gravity-Driven Fingers Journal article
Huanying Bian, Yedan Shen, Guanghui HU. An h -Adaptive Finite Element Solution of the Relaxation Non-Equilibrium Model for Gravity-Driven Fingers[J]. Advances in Applied Mathematics and Mechanics, 2021, 13(6), 1418-1440.
Authors:  Huanying Bian;  Yedan Shen;  Guanghui HU
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.5/1.1 | Submit date:2022/08/31
Non-equilibrium Richard Equation  H-adaptive Mesh Method  a Posteriori Error Estimation  Fingering Phenomenon  Porous Media Flow  
An h-adaptive finite element solution of the relaxation non-equilibrium model for gravity-driven fingers Journal article
Bian, H., Shen, Y., Hu, G.. An h-adaptive finite element solution of the relaxation non-equilibrium model for gravity-driven fingers[J]. Advances in Applied Mathematics and Mechanics, 2021, 1418-1440.
Authors:  Bian, H.;  Shen, Y.;  Hu, G.
Favorite |  | Submit date:2024/08/31
Non-equilibrium Richard equation  h-adaptive mesh method  a posteriori error estimation  fingering phenomenon  porous media flow  
An Adaptive Finite Element Solver for Demagnetization Field Calculation Journal article
Yang, Lei, Hu, Guanghui. An Adaptive Finite Element Solver for Demagnetization Field Calculation[J]. Advances in Applied Mathematics and Mechanics, 2019.
Authors:  Yang, Lei;  Hu, Guanghui
Favorite |   IF:1.5/1.1 | Submit date:2022/08/31
An adaptive finite element solver for demagnetization field calculation Journal article
Yang,Lei, Hu,Guanghui. An adaptive finite element solver for demagnetization field calculation[J]. Advances in Applied Mathematics and Mechanics, 2019, 11(5), 1048-1063.
Authors:  Yang,Lei;  Hu,Guanghui
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:1.5/1.1 | Submit date:2021/03/11
Computational Micromagnetization  Demagnetization Field  Finite Element Methods  H-adaptive Methods  Single-layer Potential  
Compact finite difference scheme for the fourth-order fractional subdiffusion system Journal article
Vong S., Wang Z.. Compact finite difference scheme for the fourth-order fractional subdiffusion system[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(4), 419-435.
Authors:  Vong S.;  Wang Z.
Favorite | TC[WOS]:37 TC[Scopus]:37 | Submit date:2018/12/24
Compact Difference Scheme  Convergence  Energy Method  Fourth-order Fractional Subdiffusion Equation  Stability  
Fourth order compact boundary value method for option pricing with jumps Journal article
Lee,Spike T., Sun,Hai Wei. Fourth order compact boundary value method for option pricing with jumps[J]. Advances in Applied Mathematics and Mechanics, 2009, 1(6), 845-861.
Authors:  Lee,Spike T.;  Sun,Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:11 | Submit date:2019/05/27
Boundary Value Method  Fourth Order Compact Scheme  Partial Integro-differential Equation  Preconditioning  Toeplitz Matrix