UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Central limit theorem and self-normalized Cramér-type moderate deviation for Euler-Maruyama scheme Journal article
Lu, Jianya, Tan, Yuzhen, Xu, Lihu. Central limit theorem and self-normalized Cramér-type moderate deviation for Euler-Maruyama scheme[J]. Bernoulli, 2022, 28(2), 937-964.
Authors:  Lu, Jianya;  Tan, Yuzhen;  Xu, Lihu
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:1.5/1.6 | Submit date:2022/05/13
Central Limit Theorem  Euler-maruyama Scheme  Self-normalized Cramér-type Moderate Deviation  Stein’s Method  Stochastic Differential Equation  
Large deviations for locally monotone stochastic partial differential equations driven by Levy noise Journal article
Xiong, Jie, Zhai, Jianliang. Large deviations for locally monotone stochastic partial differential equations driven by Levy noise[J]. BERNOULLI, 2018, 24(4A), 2842-2874.
Authors:  Xiong, Jie;  Zhai, Jianliang
Favorite | TC[WOS]:21 TC[Scopus]:24  IF:1.5/1.6 | Submit date:2018/10/30
Freidlin-wentzell Type Large Deviation Principle  Levy Processes  Locally Monotone Coefficients  Stochastic Partial Differential Equations  
Uniform dimension results for a family of Markov processes Journal article
Sun, Xiaobin, Xiao, Yimin, Xu, Lihu, Zhai, Jianliang. Uniform dimension results for a family of Markov processes[J]. BERNOULLI, 2018, 24(4B), 3924-3951.
Authors:  Sun, Xiaobin;  Xiao, Yimin;  Xu, Lihu;  Zhai, Jianliang
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.5/1.6 | Submit date:2018/10/30
Cover Principles  Markov Processes  Uniform Hausdorff Dimension  
Uniform dimension results for a family of markov processes Journal article
Sun,Xiaobin, Xiao,Yimin, Xu,Lihu, Zhai,Jianliang. Uniform dimension results for a family of markov processes[J]. Bernoulli, 2018, 24(4B), 3924-3951.
Authors:  Sun,Xiaobin;  Xiao,Yimin;  Xu,Lihu;  Zhai,Jianliang
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.5/1.6 | Submit date:2021/03/11
Cover Principles  Markov Processes  Uniform Hausdorff Dimension  
Irreducibility of stochastic real Ginzburg-Landau equation driven by alpha-stable noises and applications Journal article
Wang, Ran, Xiong, Jie, Xu, Lihu. Irreducibility of stochastic real Ginzburg-Landau equation driven by alpha-stable noises and applications[J]. BERNOULLI, 2017, 23(2), 1179-1201.
Authors:  Wang, Ran;  Xiong, Jie;  Xu, Lihu
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:1.5/1.6 | Submit date:2018/10/30
Alpha-stable Noises  Exponential Ergodicity  Irreducibility  Moderate Deviation Principle  Stochastic Real Ginzburg-landau Equation  
Irreducibility of stochastic real Ginzburg-Landau equation driven by a-stable noises and applications Journal article
Wang,Ran, Xiong,Jie, Xu,Lihu. Irreducibility of stochastic real Ginzburg-Landau equation driven by a-stable noises and applications[J]. BERNOULLI, 2017, 23(2), 1179-1201.
Authors:  Wang,Ran;  Xiong,Jie;  Xu,Lihu
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:1.5/1.6 | Submit date:2019/06/03
Exponential Ergodicity  Irreducibility  Moderate Deviation Principle  Stochastic Real Ginzburg-landau Equation  Α-stable Noises