UM

Browse/Search Results:  1-10 of 27 Help

Selected(0)Clear Items/Page:    Sort:
Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation Journal article
Zhang, Lu, Zhang, Qifeng, Sun, Hai Wei. Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation[J]. Computers and Mathematics with Applications, 2023, 150, 211-228.
Authors:  Zhang, Lu;  Zhang, Qifeng;  Sun, Hai Wei
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.9/2.6 | Submit date:2023/12/04
Exponential Integrator  Fractional Complex Ginzburg-landau Equation  Toeplitz Matrix  τ Matrix Preconditioner  Φ-function  
A novel meshless method based on RBF for solving variable-order time fractional advection-diffusion-reaction equation in linear or nonlinear systems[Formula presented] Journal article
Xu,Yi, Sun,Hong Guang, Zhang,Yuhui, Sun,Hai Wei, Lin,Ji. A novel meshless method based on RBF for solving variable-order time fractional advection-diffusion-reaction equation in linear or nonlinear systems[Formula presented][J]. Computers and Mathematics with Applications, 2023, 142, 107-120.
Authors:  Xu,Yi;  Sun,Hong Guang;  Zhang,Yuhui;  Sun,Hai Wei;  Lin,Ji
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:2.9/2.6 | Submit date:2023/08/03
Meshless Method  Nonlinear  Time Fractional Advection-diffusion-reaction Equation  Variable-order Fractional Derivative  
On τ-preconditioner for a novel fourth-order difference scheme of two-dimensional Riesz space-fractional diffusion equations Journal article
Yuan-Yuan Huang, Wei Qu, Siu Long Lei. On τ-preconditioner for a novel fourth-order difference scheme of two-dimensional Riesz space-fractional diffusion equations[J]. Computers and Mathematics with Applications, 2023, 145, 124-140.
Authors:  Yuan-Yuan Huang;  Wei Qu;  Siu Long Lei
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.9/2.6 | Submit date:2023/08/03
Preconditioned Conjugate Gradient Method  Riesz Space-fractional Diffusion Equations  Spectral Analysis  Stability And Convergence  Τ-preconditioner  
A fast finite volume method for spatial fractional diffusion equations on nonuniform meshes[Formula presented] Journal article
Fang, Zhi Wei, Zhang, Jia Li, Sun, Hai Wei. A fast finite volume method for spatial fractional diffusion equations on nonuniform meshes[Formula presented][J]. Computers and Mathematics with Applications, 2022, 108, 175-184.
Authors:  Fang, Zhi Wei;  Zhang, Jia Li;  Sun, Hai Wei
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:2.9/2.6 | Submit date:2022/03/04
Banded Preconditioner  Fast Algorithm  Finite Volume Method  Spatial Fractional Diffusion Equations  Sum-of-exponentials Technique  
A fast finite volume method for spatial fractional diffusion equations on nonuniform meshes Journal article
Fang, Z. W., Zhang, J.L., Sun, H. W.. A fast finite volume method for spatial fractional diffusion equations on nonuniform meshes[J]. Computers and Mathematics with Applications, 2022, 175-184.
Authors:  Fang, Z. W.;  Zhang, J.L.;  Sun, H. W.
Favorite |   IF:2.9/2.6 | Submit date:2022/05/30
Spatial fractional diffusion equations  Finite volume method  Sum-of-exponentials technique  Fast algorithm Banded preconditioner  
Finite volume approximation with ADI scheme and low-rank solver for high dimensional spatial distributed-order fractional diffusion equations Journal article
Chou, Lot Kei, Lei, Siu Long. Finite volume approximation with ADI scheme and low-rank solver for high dimensional spatial distributed-order fractional diffusion equations[J]. Computers and Mathematics with Applications, 2021, 89, 116-126.
Authors:  Chou, Lot Kei;  Lei, Siu Long
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.9/2.6 | Submit date:2021/12/07
Alternating Direction Implicit Scheme  Distributed-order  Finite Volume Approximation  High Dimensional  Tensor-train Format  
A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations Journal article
Fang,Zhi Wei, Sun,Hai Wei, Wang,Hong. A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations[J]. Computers and Mathematics with Applications, 2020, 80(5), 1443-1458.
Authors:  Fang,Zhi Wei;  Sun,Hai Wei;  Wang,Hong
Favorite | TC[WOS]:43 TC[Scopus]:46  IF:2.9/2.6 | Submit date:2021/03/09
Fast And Memory-saving Algorithm  Shifted Binary Block Partition  Time-fractional Diffusion Equations  Uniform Polynomial Approximation  Variable-order Caputo Fractional Derivative  
A fast preconditioned iterative method for two-dimensional options pricing under fractional differential models Journal article
Chen,Xu, Ding,Deng, Lei,Siu Long, Wang,Wenfei. A fast preconditioned iterative method for two-dimensional options pricing under fractional differential models[J]. Computers and Mathematics with Applications, 2020, 79(2), 440-456.
Authors:  Chen,Xu;  Ding,Deng;  Lei,Siu Long;  Wang,Wenfei
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.9/2.6 | Submit date:2021/03/09
Finite Difference Method  Finite Moment Log Stable Model  Preconditioner  Rainbow Options Pricing  Two-dimensional Fractional Partial Differential Equation  
A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates Journal article
Wang Z., Vong S.. A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates[J]. Computers and Mathematics with Applications, 2016, 71(12), 2524-2540.
Authors:  Wang Z.;  Vong S.
Favorite | TC[WOS]:11 TC[Scopus]:12 | Submit date:2018/12/24
Compact Difference Scheme  Convergence  Polar Coordinates  Stability  Two Dimensional Fractional Klein-gordon Equation  
Fourth order finite difference schemes for time-space fractional sub-diffusion equations Journal article
Pang,Hong Kui, Sun,Hai Wei. Fourth order finite difference schemes for time-space fractional sub-diffusion equations[J]. Computers and Mathematics with Applications, 2016, 71(6), 1287-1302.
Authors:  Pang,Hong Kui;  Sun,Hai Wei
Favorite | TC[WOS]:31 TC[Scopus]:32 | Submit date:2019/05/27
Convergence  Fourth Order Finite-difference Approximation  Fractional Derivative  L1 Approximation  Stability  Time-space Fractional Sub-diffusion Equations