UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
On the modulus-based methods without auxiliary variable for vertical linear complementarity problems Journal article
Zheng, Hua, Vong, Seakweng. On the modulus-based methods without auxiliary variable for vertical linear complementarity problems[J]. Journal of Applied Mathematics and Computing, 2024.
Authors:  Zheng, Hua;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.4/2.3 | Submit date:2024/10/10
Vertical Linear Complementarity Problem  Modulus Method  Convergence  
A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation Journal article
Chen, Lisha, Wang, Zhibo, Vong, Seakweng. A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation[J]. Journal of Applied Mathematics and Computing, 2024.
Authors:  Chen, Lisha;  Wang, Zhibo;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.4/2.3 | Submit date:2024/08/05
Adi Method  Nonuniform Meshes  Sfor Method  Time-fractional Telegraph Equation  Weak Singularity  
Modulus-based synchronous multisplitting method for horizontal nonlinear complementarity problem Journal article
Bu, Fan, Vong, Seakweng, Zheng, Hua. Modulus-based synchronous multisplitting method for horizontal nonlinear complementarity problem[J]. Journal of Applied Mathematics and Computing, 2024, 70(3), 2405-2426.
Authors:  Bu, Fan;  Vong, Seakweng;  Zheng, Hua
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.4/2.3 | Submit date:2024/05/16
Horizontal Nonlinear Complementarity Problem  Matrix Multisplitting  Modulus-based Iteration Method  Parallel  
Exponential-sum-approximation technique for variable-order time-fractional diffusion equations Journal article
Zhang, Jia Li, Fang, Zhi Wei, Sun, Hai Wei. Exponential-sum-approximation technique for variable-order time-fractional diffusion equations[J]. Journal of Applied Mathematics and Computing, 2021, 68(1), 323-347.
Authors:  Zhang, Jia Li;  Fang, Zhi Wei;  Sun, Hai Wei
Favorite | TC[WOS]:26 TC[Scopus]:25  IF:2.4/2.3 | Submit date:2022/03/04
Exponential-sum-approximation Method  Fast Algorithm  Stability And Convergence  Time-fractional Diffusion Equation  
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations Journal article
Lu,Xin, Fang,Zhi Wei, Sun,Hai Wei. Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations[J]. Journal of Applied Mathematics and Computing, 2020, 66(1-2), 673–700.
Authors:  Lu,Xin;  Fang,Zhi Wei;  Sun,Hai Wei
Favorite | TC[WOS]:20 TC[Scopus]:21  IF:2.4/2.3 | Submit date:2021/03/09
Gmres Method  Riesz Space Fractional Diffusion Equations  Shifted Grünwald Discretization  Sine-transform-based Splitting Preconditioner  Symmetric Positive Definite Toeplitz Matrix  
Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method Journal article
Zhang, L., Sun, H. W.. Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method[J]. Journal of Applied Mathematics and Computing, 2020, 449-472.
Authors:  Zhang, L.;  Sun, H. W.
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:2.4/2.3 | Submit date:2022/07/25
Riesz Fractional Reaction–diffusion Equation·toeplitz Structure  Exponential Runge–kutta Method  Matrix Exponential  Shift-invert Lanczos Method  
Numerical solution for multi-dimensional Riesz fractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method Journal article
Zhang,Lu, Sun,Hai Wei. Numerical solution for multi-dimensional Riesz fractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method[J]. Journal of Applied Mathematics and Computing, 2020, 62(1-2), 449-472.
Authors:  Zhang,Lu;  Sun,Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:2.4/2.3 | Submit date:2021/03/09
Exponential Runge–kutta Method  Matrix Exponential  Riesz Fractional Reaction–diffusion Equation  Shift-invert Lanczos Method  Toeplitz Structure