×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [4]
Authors
VONG SEAK WENG [4]
JIN XIAO QING [1]
LEI SIU LONG [1]
Document Type
Journal article [5]
Date Issued
2021 [1]
2014 [2]
2012 [2]
Language
英語English [4]
Source Publication
Numerical Algebr... [4]
Numerical Algebr... [1]
Indexed By
ESCI [1]
SCIE [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems
Journal article
He, Jie Wen, Lei, Chi Chon, Shi, Chen Yang, Vong, Seak Weng. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems[J]. Numerical Algebra Control and Optimization, 2021, 11(3), 353 - 362.
Authors:
He, Jie Wen
;
Lei, Chi Chon
;
Shi, Chen Yang
;
Vong, Seak Weng
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
IF:
1.1
/
1.0
|
Submit date:2021/12/08
Augmented Lagrangian
Inexact Alternating Direction Method
Iterative Methods
Non-linear Complementarity Problem
Symmetric Positive Definite
A note on the stability of a second order finite difference scheme for space fractional diffusion equations
Journal article
Qu,Wei, Lei,Siu Long, Vong,Seak Weng. A note on the stability of a second order finite difference scheme for space fractional diffusion equations[J]. Numerical Algebra, Control and Optimization, 2014, 4(4), 317-325.
Authors:
Qu,Wei
;
Lei,Siu Long
;
Vong,Seak Weng
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
IF:
1.1
/
1.0
|
Submit date:2021/03/09
Riemann-liouville Derivative
Second Order Finite Difference Scheme
Space Fractional Diffusion Equation
Unconditionally Stable
A note on the stability of a second order finite difference scheme for space fractional diffusion equations
Journal article
Qu W., Lei S.-L., Vong S.-W.. A note on the stability of a second order finite difference scheme for space fractional diffusion equations[J]. Numerical Algebra, Control and Optimization, 2014, 4(4), 317-325.
Authors:
Qu W.
;
Lei S.-L.
;
Vong S.-W.
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
|
Submit date:2018/12/24
Riemann-liouville Derivative
Second Order Finite Difference Scheme
Space Fractional Diffusion Equation
Unconditionally Stable
On some inverse singular value problems with toeplitz-related structure
Journal article
Bai Z.-J., Jin X.-Q., Vong S.-W.. On some inverse singular value problems with toeplitz-related structure[J]. Numerical Algebra, Control and Optimization, 2012, 2(1), 187-192.
Authors:
Bai Z.-J.
;
Jin X.-Q.
;
Vong S.-W.
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
|
Submit date:2018/12/24
Inverse Singular Value Problem
Toeplitz Matrix
Toeplitz-plus-hankel Matrix
On some inverse singular value problems with toeplitz-related structure
Journal article
Bai,Zheng Jian, Jin,Xiao Qing, Vong,Seak Weng. On some inverse singular value problems with toeplitz-related structure[J]. Numerical Algebra, Control and Optimization, 2012, 2(1), 187-192.
Authors:
Bai,Zheng Jian
;
Jin,Xiao Qing
;
Vong,Seak Weng
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
IF:
1.1
/
1.0
|
Submit date:2021/03/09
Inverse Singular Value Problem
Toeplitz Matrix
Toeplitz-plus-hankel Matrix