UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Design and implementation of an adaptive neural network observer–based backstepping sliding mode controller for robot manipulators Journal article
Xi, Rui Dong, Ma, Tie Nan, Xiao, Xiao, Yang, Zhi Xin. Design and implementation of an adaptive neural network observer–based backstepping sliding mode controller for robot manipulators[J]. Transactions of the Institute of Measurement and Control, 2024, 46(6), 1093-1104.
Authors:  Xi, Rui Dong;  Ma, Tie Nan;  Xiao, Xiao;  Yang, Zhi Xin
Favorite | TC[WOS]:5 TC[Scopus]:6  IF:1.7/1.6 | Submit date:2024/02/23
Disturbance Observer  Rbf Neural Networks  Robot Control  Sliding Mode Control (Smc)  State Observer  
An automatic alignment method for discharge arm of mobile crushing station based on binocular vision and fuzzy control Journal article
Guan,Wei, Wang,Shuai, Chen,Zeren, Wang,Guoqiang, Huang,Tingting, Liu,Zhengbin, Guo,Jianbo. An automatic alignment method for discharge arm of mobile crushing station based on binocular vision and fuzzy control[J]. Transactions of the Institute of Measurement and Control, 2023, 45(6), 1001-1020.
Authors:  Guan,Wei;  Wang,Shuai;  Chen,Zeren;  Wang,Guoqiang;  Huang,Tingting; et al.
Favorite | TC[WOS]:0 TC[Scopus]:2  IF:1.7/1.6 | Submit date:2023/08/03
Alignment  Binocular Vision  Discharge Arm  Fuzzy Control  Mobile Crushing Station  
An automatic alignment method for discharge arm of mobile crushing station based on binocular vision and fuzzy control Review article
2022
Authors:  Guan, Wei;  Wang, Shuai;  Chen, Zeren;  Wang, Guoqiang;  Huang, Tingting; et al.
Favorite | TC[WOS]:0 TC[Scopus]:2  IF:1.7/1.6 | Submit date:2023/01/30
Alignment  Binocular Vision  Discharge Arm  Fuzzy Control  Mobile Crushing Station  
A generalized additive model-based data-driven solution for lithium-ion battery capacity prediction and local effects analysis Journal article
Chen, Tao, Gao, Ciwei, Hui, Hongxun, Cui, Qiushi, Long, Huan. A generalized additive model-based data-driven solution for lithium-ion battery capacity prediction and local effects analysis[J]. Transactions of the Institute of Measurement and Control, 2021.
Authors:  Chen, Tao;  Gao, Ciwei;  Hui, Hongxun;  Cui, Qiushi;  Long, Huan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.7/1.6 | Submit date:2022/05/13
Battery Capacity Prediction  Data-driven Solution  Energy Storage System  Generalized Additive Model  Lithium-ion Battery  
Study on novel signal processing and simultaneous-fault diagnostic method for wind turbine Journal article
Wang, Xian Bo, Miao, Pu, Zhang, Kun, Zhang, Xiaoyuan, Wang, Jun. Study on novel signal processing and simultaneous-fault diagnostic method for wind turbine[J]. Transactions of the Institute of Measurement and Control, 2019, 41(14), 4100-4113.
Authors:  Wang, Xian Bo;  Miao, Pu;  Zhang, Kun;  Zhang, Xiaoyuan;  Wang, Jun
Favorite | TC[WOS]:5 TC[Scopus]:6  IF:1.7/1.6 | Submit date:2022/05/17
Empirical Mode Decomposition  Extreme Learning Machines  Fault Diagnosis  Variational Mode Decomposition  Wind Turbine  
A ripple-based maximum power point tracking method for three-phase grid-connected photovoltaic inverter Journal article
Wang, Xian-Bo, Yang, Zhi-Xin, Wang, Jun-Xiao. A ripple-based maximum power point tracking method for three-phase grid-connected photovoltaic inverter[J]. Transactions of the Institute of Measurement and Control, 2018, 40(2), 615-629.
Authors:  Wang, Xian-Bo;  Yang, Zhi-Xin;  Wang, Jun-Xiao
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:1.7/1.6 | Submit date:2018/10/30
Photovoltaic Inverter  Maximum Power Point Tracking  Single-stage System  Adaptive Perturb And Observe  Partially Shaded Conditions