UM

Browse/Search Results:  1-10 of 81 Help

Selected(0)Clear Items/Page:    Sort:
In-situ monitoring of additive friction stir deposition of AA6061: Effect of rotation speed on the microstructure and mechanical properties Journal article
Qiao, Q., Wang, L., Tam, C. W., Gong, X., Dong, X., Lin, Y., Lam, W. I., Qian, H., Guo, D., Zhang, D., Kwok, C. T., Tam, L. M.. In-situ monitoring of additive friction stir deposition of AA6061: Effect of rotation speed on the microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2024, 902, 146620.
Authors:  Qiao, Q.;  Wang, L.;  Tam, C. W.;  Gong, X.;  Dong, X.; et al.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:6.1/6.2 | Submit date:2024/06/05
Additive Friction Stir Deposition (Afsd)  In-situ Monitoring  Mechanical Properties  Microstructure  Rotation Speed  
Operational Research: methods and applications Journal article
Petropoulos, Fotios, Laporte, Gilbert, Aktas, Emel, Alumur, Sibel A., Archetti, Claudia, Ayhan, Hayriye, Battarra, Maria, Bennell, Julia A., Bourjolly, Jean Marie, Boylan, John E., Breton, Michèle, Canca, David, Charlin, Laurent, Chen, Bo, Cicek, Cihan Tugrul, Cox, Louis Anthony, Currie, Christine S.M., Demeulemeester, Erik, Ding, Li, Disney, Stephen M., Ehrgott, Matthias, Eppler, Martin J., Erdoğan, Güneş, Fortz, Bernard, Franco, L. Alberto, Frische, Jens, Greco, Salvatore, Gregory, Amanda J., Hämäläinen, Raimo P., Herroelen, Willy, Hewitt, Mike, Holmström, Jan, Hooker, John N., Işık, Tuğçe, Johnes, Jill, Kara, Bahar Y., Karsu, Özlem, Kent, Katherine, Köhler, Charlotte, Kunc, Martin, Kuo, Yong Hong, Letchford, Adam N., Leung, Janny, Li, Dong, Li, Haitao, Lienert, Judit, Ljubić, Ivana, Lodi, Andrea, Lozano, Sebastián, Lurkin, Virginie, Martello, Silvano, McHale, Ian G., Midgley, Gerald, Morecroft, John D.W., Mutha, Akshay, Oğuz, Ceyda, Petrovic, Sanja, Pferschy, Ulrich, Psaraftis, Harilaos N., Rose, Sam, Saarinen, Lauri, Salhi, Said, Song, Jing Sheng, Sotiros, Dimitrios, Stecke, Kathryn E., Strauss, Arne K., Tarhan, İstenç, Thielen, Clemens, Toth, Paolo, Van Woensel, Tom, Berghe, Greet Vanden, Vasilakis, Christos, Vaze, Vikrant, Vigo, Daniele, Virtanen, Kai, Wang, Xun, Weron, Rafał, White, Leroy, Yearworth, Mike, Yıldırım, E. Alper, Zaccour, Georges, Zhao, Xuying. Operational Research: methods and applications[J]. Journal of the Operational Research Society, 2024, 75(3), 423-617.
Authors:  Petropoulos, Fotios;  Laporte, Gilbert;  Aktas, Emel;  Alumur, Sibel A.;  Archetti, Claudia; et al.
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:2.7/3.0 | Submit date:2024/05/16
Decision Making  Encyclopedia  Models  Optimisation  Practice  Principles  Programming  Review  Simulation  Systems  Theory  
A 90- to 115-GHz superheterodyne receiver front-end for W-band imaging system in 28-nm complementary metal-oxide-semiconductor Journal article
Wang, Xi, Wei, Dong, Zhang, Zhiyang, Wu, Tianxiang, Chen, Xu, Chen, Yong, Ren, Junyan, Ma, Shunli. A 90- to 115-GHz superheterodyne receiver front-end for W-band imaging system in 28-nm complementary metal-oxide-semiconductor[J]. International Journal of Circuit Theory and Applications, 2023, 51(4), 1530-1547.
Authors:  Wang, Xi;  Wei, Dong;  Zhang, Zhiyang;  Wu, Tianxiang;  Chen, Xu; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:1.8/1.7 | Submit date:2023/01/30
Imaging System  Low-noise Amplifier (Lna)  Peak-staggered Matching Technique  Superheterodyne Receiver (Rx)  Symmetrical-layout Mixer  Transistor-layout Optimization  W-band  Wideband  
A 13 µW Analog Front-End with RRAM-Based Lowpass FIR Filter for EEG Signal Detection Journal article
Ren, Qirui, Chen, Chengying, Dong, Danian, Xu, Xiaoxin, Chen, Yong, Zhang, Feng. A 13 µW Analog Front-End with RRAM-Based Lowpass FIR Filter for EEG Signal Detection[J]. Sensors, 2022, 22(16), 6096.
Authors:  Ren, Qirui;  Chen, Chengying;  Dong, Danian;  Xu, Xiaoxin;  Chen, Yong; et al.
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:3.4/3.7 | Submit date:2023/01/30
Analog Front-end (Afe)  Cmos  Eeg  Rram-based Lowpass Fir Filter  Signal Process  Ultra-low Power  
Biomimetic Redox-Responsive Mesoporous Organosilica Nanoparticles Enhance Cisplatin-based Chemotherapy Journal article
Chen, F., Zhang, F., Wang, Y., Peng, J., Cao, L., Mei, Q., Ge, M., Li, L., Chen, M., Dong, W., Chang, Z.. Biomimetic Redox-Responsive Mesoporous Organosilica Nanoparticles Enhance Cisplatin-based Chemotherapy[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10, 860949-860949.
Authors:  Chen, F.;  Zhang, F.;  Wang, Y.;  Peng, J.;  Cao, L.; et al.
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:4.3/5.1 | Submit date:2022/08/29
Cisolatin  Mesoporous Silica Nanoparticles  Glutathione Depletion  Biomimetic Nanocarrier  Degradation  
Institutional support and firms’ entrepreneurial orientation in emerging economies Journal article
Xiao, Z., Chen, X. Y., Dong, M., Gao, S.. Institutional support and firms’ entrepreneurial orientation in emerging economies[J]. Long Range Planning, 2022.
Authors:  Xiao, Z.;  Chen, X. Y.;  Dong, M.;  Gao, S.
Favorite |   IF:7.4/10.2 | Submit date:2022/08/29
Entrepreneurial Orientation  Institutional Support  Firm Ownership  Industry Life Cycle  Emerging Economies  
A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy Journal article
Peng, J., Chen, F., Liu, Y., Zhang, F., Cao, L., You, Q., Yang, D., Chang, Z., Ge, M., Li, L., Wang, Z., Mei, Q., Shao, D., Chen, M., Dong, W.. A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy[J]. Theranostics, 2022, 1756-1768.
Authors:  Peng, J.;  Chen, F.;  Liu, Y.;  Zhang, F.;  Cao, L.; et al.
Favorite |   IF:12.4/12.0 | Submit date:2022/08/29
phototherapy  light response  tumor penetration  mesoporous organosilica nanoparticles  immunotherapy  
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results Conference paper
Perez-Pellitero, Eduardo, Catley-Chandar, Sibi, Shaw, Richard, Leonardis, Ales, Timofte, Radu, Zhang, Zexin, Liu, Cen, Peng, Yunbo, Lin, Yue, Yu, Gaocheng, Zhang, Jin, Ma, Zhe, Wang, Hongbin, Chen, Xiangyu, Wang, Xintao, Wu, Haiwei, Liu, Lin, Dong, Chao, Zhou, Jiantao, Yan, Qingsen, Zhang, Song, Chen, Weiye, Liu, Yuhang, Zhang, Zhen, Zhang, Yanning, Shi, Javen Qinfeng, Gong, Dong, Zhu, Dan, Sun, Mengdi, Chen, Guannan, Hu, Yang, Li, Haowei, Zou, Baozhu, Liu, Zhen, Lin, Wenjie, Jiang, Ting, Jiang, Chengzhi, Li, Xinpeng, Han, Mingyan, Fan, Haoqiang, Sun, Jian, Liu, Shuaicheng, Marin-Vega, Juan, Sloth, Michael, Schneider-Kamp, Peter, Rottger, Richard, Li, Chunyang, Bao, Long, He, Gang, Xu, Ziyao, Xu, Li, Zhan, Gen, Sun, Ming, Wen, Xing, Li, Junlin, Li, Jinjing, Li, Chenghua, Gang, Ruipeng, Li, Fangya, Liu, Chenming, Feng, Shuang, Lei, Fei, Liu, Rui, Ruan, Junxiang, Dai, Tianhong, Li, Wei, Lu, Zhan, Liu, Hengyan, Huang, Peian, Ren, Guangyu, Luo, Yonglin, Liu, Chang, Tu, Qiang, Ma, Sai, Cao, Yizhen, Tel, Steven, Heyrman, Barthelemy, Ginhac, Dominique, Lee, Chul, Kim, Gahyeon, Park, Seonghyun, An Gia Vien, Truong Thanh Nhat Mai, Yoon, Howoon, Tu Vo, Holston, Alexander, Zaheer, Sheir, Park, Chan Y.. NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results[C], 2022, 1008-1022.
Authors:  Perez-Pellitero, Eduardo;  Catley-Chandar, Sibi;  Shaw, Richard;  Leonardis, Ales;  Timofte, Radu; et al.
Favorite | TC[WOS]:11 TC[Scopus]:28 | Submit date:2023/01/30
Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution Journal article
Liang, Y.C., Cao, Q., Liu, K.K., Peng, X.Y., Sui, L.Z., Wang, S., Song, S.Y., Wu, X.Y., Zhao, W.B., Deng, Y., Lou, Q., Dong, L., Shan, C.X.. Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution[J]. ACS Nano, 2021, 16242-16254.
Authors:  Liang, Y.C.;  Cao, Q.;  Liu, K.K.;  Peng, X.Y.;  Sui, L.Z.; et al.
Favorite |   IF:15.8/16.2 | Submit date:2022/08/31
carbon nanodots  phosphorescence  red afterglow  Förster resonant energy transfer  bioimaging  
A 35-to-50 GHz CMOS Low-Noise Amplifier with 22.2% -1-dB Fractional Bandwidth and 30.5-dB Maximum Gain for 5G New Radio Conference paper
Wei, Dong, Wu, Tianxiang, Ma, Shunli, Chen, Yong, Ren, Junyan. A 35-to-50 GHz CMOS Low-Noise Amplifier with 22.2% -1-dB Fractional Bandwidth and 30.5-dB Maximum Gain for 5G New Radio[C], NEW YORK, USA:Institute of Electrical and Electronics Engineers Inc., 2021, 195-198.
Authors:  Wei, Dong;  Wu, Tianxiang;  Ma, Shunli;  Chen, Yong;  Ren, Junyan
Favorite | TC[WOS]:7 TC[Scopus]:9 | Submit date:2021/12/08
Low-noise Amplifier (Lna)  Noise Figure (Nf)  Cmos  Transformer  Gm Boosting  Gain Flatness  Magnetically Coupling Resonator  Fractional Bandwidth (Bw)  5g New Radio  Ieee 802.11aj  Common Source  Common Gate  Noise Factor