UM

Browse/Search Results:  1-10 of 14 Help

Selected(0)Clear Items/Page:    Sort:
Eleven routine clinical features predict COVID-19 severity uncovered by machine learning of longitudinal measurements Journal article
Zhou, Kai, Sun, Yaoting, Li, Lu, Zang, Zelin, Wang, Jing, Li, Jun, Liang, Junbo, Zhang, Fangfei, Zhang, Qiushi, Ge, Weigang, Chen, Hao, Sun, Xindong, Yue, Liang, Wu, Xiaomai, Shen, Bo, Xu, Jiaqin, Zhu, Hongguo, Chen, Shiyong, Yang, Hai, Huang, Shigao, Peng, Minfei, Lv, Dongqing, Zhang, Chao, Zhao, Haihong, Hong, Luxiao, Zhou, Zhehan, Chen, Haixiao, Dong, Xuejun, Tu, Chunyu, Li, Minghui, Zhu, Yi, Chen, Baofu, Li, Stan Z., Guo, Tiannan. Eleven routine clinical features predict COVID-19 severity uncovered by machine learning of longitudinal measurements[J]. Computational and Structural Biotechnology Journal, 2021, 19, 3640-3649.
Authors:  Zhou, Kai;  Sun, Yaoting;  Li, Lu;  Zang, Zelin;  Wang, Jing; et al.
Favorite | TC[WOS]:26 TC[Scopus]:29  IF:4.4/5.0 | Submit date:2021/12/07
Covid-19  Sars-cov-2  Severity Prediction  Machine Learning  Routine Clinical Test  Longitudinal Dynamics  
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning Conference paper
Liu, X., Wang, L., Wong, F., Ding, L., Chao, L., Tu, Z.. Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning[C], 2021.
Authors:  Liu, X.;  Wang, L.;  Wong, F.;  Ding, L.;  Chao, L.; et al.
Favorite |  | Submit date:2022/08/19
Sequence-to-Sequence  Neural Machine Translation  
Understanding and Improving Lexical Choice in Non-Autoregressive Translation Conference paper
Ding, L., Wang, L., Liu, X., Wong, F., Tao, D., Tu, Z.. Understanding and Improving Lexical Choice in Non-Autoregressive Translation[C], 2021.
Authors:  Ding, L.;  Wang, L.;  Liu, X.;  Wong, F.;  Tao, D.; et al.
Favorite |  | Submit date:2022/08/19
Non-Autoregressive  Neural Machine Translation  
Crystalline and magnetic structures, magnetization, heat capacity, and anisotropic magnetostriction effect in a yttrium-chromium oxide Journal article
Zhu, Y., Fu, Y., Tu, B., Li, T., Miao, J., Zhao, Q., Wu, S., Xia, J., Zhou, P., Huq, A., Schmidt, W., Ouyang, D., Tang, Z., He, Z., Li, H.-F.. Crystalline and magnetic structures, magnetization, heat capacity, and anisotropic magnetostriction effect in a yttrium-chromium oxide[J]. Physical Review Materials, 2020, 4(9), 094409.
Authors:  Zhu, Y.;  Fu, Y.;  Tu, B.;  Li, T.;  Miao, J.; et al.
Favorite | TC[WOS]:15 TC[Scopus]:16  IF:3.1/3.4 | Submit date:2022/08/11
Erratum: High-temperature magnetism and crystallography of a YCrO3 single crystal Journal article
Zhu, Y., Wu, S., Tu, B., Jin, S., Huq, A., Persson, J., Gao, H., Ouyang, D., He, Z., Yao, D.-X., Tang, Z., Li, H.-F.. Erratum: High-temperature magnetism and crystallography of a YCrO3 single crystal[J]. Physical Review B, 2020, 019901-1-019901-3.
Authors:  Zhu, Y.;  Wu, S.;  Tu, B.;  Jin, S.;  Huq, A.; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2022/08/11
Magnetism  Crystallography  Ycro3  
High-temperature magnetism and crystallography of a YCrO3 single crystal Journal article
Zhu, Y. H., Wu, S., Tu, B., Jin, S. J., Huq, A., Persson, J., Gao, H. S., Ouyang, D., He, Z. B., Yao, D.-X., Tang, Z., Li, H.-F.. High-temperature magnetism and crystallography of a YCrO3 single crystal[J]. Physical Review B, 2020, 101(1), 014114.
Authors:  Zhu, Y. H.;  Wu, S.;  Tu, B.;  Jin, S. J.;  Huq, A.; et al.
Favorite | TC[WOS]:24 TC[Scopus]:23 | Submit date:2022/08/11
Novel Molecular Doping Mechanism for n-Doping of SnO 2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells Journal article
Tu B., Shao Y., Chen W., Wu Y., Li X., He Y., Li J., Liu F., Zhang Z., Lin Y., Lan X., Xu L., Shi X., Ng A.M.C., Li H., Chung L.W., Djurisic A.B., He Z.. Novel Molecular Doping Mechanism for n-Doping of SnO 2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells[J]. Advanced Materials, 2019, 31(15).
Authors:  Tu B.;  Shao Y.;  Chen W.;  Wu Y.;  Li X.; et al.
Favorite | TC[WOS]:157 TC[Scopus]:160 | Submit date:2019/04/08
Delocalized Electrons  Molecular Doping  N-type  Perovskite Solar Cells  Sno2  
Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells Journal article
Zhao, D., Wu, Y., Tu, B., Xing, G., Li, H., He, Z.. Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells[J]. Nanomaterials, 2019, 286-300.
Authors:  Zhao, D.;  Wu, Y.;  Tu, B.;  Xing, G.;  Li, H.; et al.
Favorite |   IF:4.4/4.7 | Submit date:2022/08/11
holes transport layer  compactness  hole transfer  recombination  Cu-In-Ga-S  perovskite solar cells  
Novel Molecular Doping Mechanism for n‐Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells Journal article
Tu, B., Shao, Y., Chen, W., Wu, Y., Li, X., He, Y., Li, J., Liu, F., Zhang, Z., Lin, Y., Lan, X., Xu, L., Shi, X., Ng, A. M. C., Li, H.-F., Chung, L. W., Djurisic, A. B., He, Z.. Novel Molecular Doping Mechanism for n‐Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells[J]. Advanced Materials, 2019, 1805944-1-1805944-9.
Authors:  Tu, B.;  Shao, Y.;  Chen, W.;  Wu, Y.;  Li, X.; et al.
Favorite | TC[WOS]:157 TC[Scopus]:160  IF:27.4/30.2 | Submit date:2022/08/11
N‐doping Of Sno2  Triphenylphosphine Oxide  Perovskite Solar Cells  
Modeling Localness for Self-Attention Networks Conference paper
Yang, B., Tu, Z., Wong, F., Meng, F., Chao, L., Zhang, T.. Modeling Localness for Self-Attention Networks[C], Brussels:Association for Computational Linguistics, 2018, 4449-4458.
Authors:  Yang, B.;  Tu, Z.;  Wong, F.;  Meng, F.;  Chao, L.; et al.
Favorite |  | Submit date:2022/08/19
Neural Machine Translation  Transformer  Self-Attention Models  Local Context