UM

Browse/Search Results:  1-10 of 37 Help

Selected(0)Clear Items/Page:    Sort:
Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation Journal article
Zhang, Lu, Zhang, Qifeng, Sun, Hai Wei. Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation[J]. Computers and Mathematics with Applications, 2023, 150, 211-228.
Authors:  Zhang, Lu;  Zhang, Qifeng;  Sun, Hai Wei
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.9/2.6 | Submit date:2023/12/04
Exponential Integrator  Fractional Complex Ginzburg-landau Equation  Toeplitz Matrix  τ Matrix Preconditioner  Φ-function  
Sine transform based preconditioning techniques for space fractional diffusion equations Journal article
Qin, Hai Hua, Pang, Hong Kui, Sun, Hai Wei. Sine transform based preconditioning techniques for space fractional diffusion equations[J]. Numerical Linear Algebra with Applications, 2022, 30(4), e2474.
Authors:  Qin, Hai Hua;  Pang, Hong Kui;  Sun, Hai Wei
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.8/1.8 | Submit date:2023/01/30
Finite Difference Method  Gmres Method  Numerical Range  Space Fractional Derivative  Toeplitz Matrix  τ Preconditioner  
Spectral Analysis for Preconditioning of MultiDimensional Riesz Fractional Diffusion Equations Journal article
Huang, Xin, Lin, Xue Lei, Ng, Michael K., Sun, Hai Wei. Spectral Analysis for Preconditioning of MultiDimensional Riesz Fractional Diffusion Equations[J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15(3), 565-591.
Authors:  Huang, Xin;  Lin, Xue Lei;  Ng, Michael K.;  Sun, Hai Wei
Favorite | TC[WOS]:28 TC[Scopus]:29  IF:1.9/1.3 | Submit date:2023/01/30
Multi-dimensional Riesz Fractional Derivative  Multi-level Toeplitz Matrix  Preconditioned Conjugate Gradient Method  Sine Transform Based Preconditioner  
A preconditioner based on sine transform for two-dimensional semi-linear Riesz space fractional diffusion equations in convex domains Journal article
Huang, Xin, Sun, Hai Wei. A preconditioner based on sine transform for two-dimensional semi-linear Riesz space fractional diffusion equations in convex domains[J]. Applied Numerical Mathematics, 2021, 169, 289-302.
Authors:  Huang, Xin;  Sun, Hai Wei
Favorite | TC[WOS]:15 TC[Scopus]:15  IF:2.2/2.3 | Submit date:2021/12/08
Gmres Method  Penalization  Riesz Fractional Derivative  Sine Transform Based Preconditioner  Toeplitz Matrix  
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations Journal article
Lu,Xin, Fang,Zhi Wei, Sun,Hai Wei. Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations[J]. Journal of Applied Mathematics and Computing, 2020, 66(1-2), 673–700.
Authors:  Lu,Xin;  Fang,Zhi Wei;  Sun,Hai Wei
Favorite | TC[WOS]:20 TC[Scopus]:21  IF:2.4/2.3 | Submit date:2021/03/09
Gmres Method  Riesz Space Fractional Diffusion Equations  Shifted Grünwald Discretization  Sine-transform-based Splitting Preconditioner  Symmetric Positive Definite Toeplitz Matrix  
Speeding up SimRank computations by polynomial preconditioners Journal article
Sio Wan Ng, Siu-Long Lei, Juan Lu, Zhiguo Gong. Speeding up SimRank computations by polynomial preconditioners[J]. Applied Numerical Mathematics, 2020, 153, 147-163.
Authors:  Sio Wan Ng;  Siu-Long Lei;  Juan Lu;  Zhiguo Gong
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:2.2/2.3 | Submit date:2021/03/09
Graph  Linear System  Matrix  Polynomial Preconditioner  Simrank  
Circulant preconditioners for a kind of spatial fractional diffusion equations Journal article
Fang, Z.W., Ng, M.K., Sun, H. W.. Circulant preconditioners for a kind of spatial fractional diffusion equations[J]. Numerical Algorithm, 2019, 729-747.
Authors:  Fang, Z.W.;  Ng, M.K.;  Sun, H. W.
Favorite | TC[WOS]:13 TC[Scopus]:16  IF:1.7/1.9 | Submit date:2022/07/25
Fractional Diffusion Equation  Toeplitz Matrix  Circulant Preconditioner  Fast Fourier Transform  Krylov Subspace Methods  
Circulant preconditioners for a kind of spatial fractional diffusion equations Journal article
Zhi-Wei Fang, Michael K. Ng, Hai-Wei Sun. Circulant preconditioners for a kind of spatial fractional diffusion equations[J]. Numerical Algorithms, 2019, 82(2), 729-747.
Authors:  Zhi-Wei Fang;  Michael K. Ng;  Hai-Wei Sun
Favorite | TC[WOS]:13 TC[Scopus]:16  IF:1.7/1.9 | Submit date:2019/08/09
Fractional Diffusion Equation  Fast Fourier Transform  Krylov Subspace Methods  Toeplitz Matrix  Circulant Preconditioner  
A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains Journal article
Chen,Xu, Deng,Si Wen, Lei,Siu Long. A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains[J]. Journal of Scientific Computing, 2019, 80(2), 1033-1057.
Authors:  Chen,Xu;  Deng,Si Wen;  Lei,Siu Long
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.8/2.7 | Submit date:2021/03/11
Block-circulant-circulant-block Matrix  Convex Domain  Finite Volume Method  Preconditioner  Space-fractional Diffusion Equation  
A separable preconditioner for time-space fractional Caputo-Riesz di usion equations Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A separable preconditioner for time-space fractional Caputo-Riesz di usion equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2018, 827-853.
Authors:  Lin, X.L.;  Ng, M.K.;  Sun, H. W.
Favorite |   IF:1.9/1.3 | Submit date:2022/07/25
Block lower triangular  Toeplitz-like matrix  Diagonalization  Separable  Block \epsilon-circulant preconditioner  Time-space fractional diffusion equations