UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation Journal article
Chen, Lisha, Wang, Zhibo, Vong, Seakweng. A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation[J]. Journal of Applied Mathematics and Computing, 2024.
Authors:  Chen, Lisha;  Wang, Zhibo;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.4/2.3 | Submit date:2024/08/05
Adi Method  Nonuniform Meshes  Sfor Method  Time-fractional Telegraph Equation  Weak Singularity  
ONE-PARAMETER FINITE DIFFERENCE METHODS AND THEIR ACCELERATED SCHEMES FOR SPACE-FRACTIONAL SINE-GORDON EQUATIONS WITH DISTRIBUTED DELAY Journal article
Sun, Tao, Zhang, Chengjian, Sun, Haiwei. ONE-PARAMETER FINITE DIFFERENCE METHODS AND THEIR ACCELERATED SCHEMES FOR SPACE-FRACTIONAL SINE-GORDON EQUATIONS WITH DISTRIBUTED DELAY[J]. Journal of Computational Mathematics, 2024, 42(3), 705-734.
Authors:  Sun, Tao;  Zhang, Chengjian;  Sun, Haiwei
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2024/05/16
Adi Scheme  Convergence Analysis  Fractional Sine-gordon Equation With Distributed Delay  One-parameter Finite Difference Methods  Pcg Method  
A linearized fourth-order compact ADI method for phytoplankton–zooplankton model arising in marine ecosystem Journal article
Yuan, Gangnan, Ding, Deng, Lu, Weiguo, Wu, Fengyan. A linearized fourth-order compact ADI method for phytoplankton–zooplankton model arising in marine ecosystem[J]. Computational and Applied Mathematics, 2024, 43(1), 63.
Authors:  Yuan, Gangnan;  Ding, Deng;  Lu, Weiguo;  Wu, Fengyan
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.5/2.2 | Submit date:2024/02/22
Alternating Direction Implicit (Adi) Method  Convergence  Phytoplankton–zooplankton  Stability  
A weighted ADI scheme with variable time steps for diffusion-wave equations Journal article
Pin Lyu, Seakweng Vong. A weighted ADI scheme with variable time steps for diffusion-wave equations[J]. CALCOLO, 2023, 60(4), 49.
Authors:  Pin Lyu;  Seakweng Vong
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.4/1.8 | Submit date:2023/12/04
Adi Method  Diffusion-wave Equation  Nonuniform Mesh  Weak Singularity  
Total Value Adjustment of Multi-Asset Derivatives under Multivariate CGMY Processes Journal article
Wu, Fengyan, Ding, Deng, Yin, Juliang, Lu, Weiguo, Yuan, Gangnan. Total Value Adjustment of Multi-Asset Derivatives under Multivariate CGMY Processes[J]. Fractal and Fractional, 2023, 7(4), 308.
Authors:  Wu, Fengyan;  Ding, Deng;  Yin, Juliang;  Lu, Weiguo;  Yuan, Gangnan
Adobe PDF | Favorite | TC[WOS]:4 TC[Scopus]:4  IF:3.6/3.5 | Submit date:2023/04/15
Counterparty Credit Risk  Total Value Adjustment  Cgmy Process  Monte Carlo Simulation  Adi Method  2d Fourier Expansion  
A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation Journal article
Qin, Hongyu, Wu, Fengyan, Ding, Deng. A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation[J]. Applied Mathematics and Computation, 2022, 412, 126580.
Authors:  Qin, Hongyu;  Wu, Fengyan;  Ding, Deng
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:3.5/3.1 | Submit date:2022/02/21
Compact Adi Numerical Method  Convergence  Nonlinear Delayed Schrödinger Equation  Stability  
Finite difference schemes for two-dimensional time-space fractional differential equations Journal article
Wang Z., Vong S., Lei S.-L.. Finite difference schemes for two-dimensional time-space fractional differential equations[J]. International Journal of Computer Mathematics, 2016, 93(3), 578-595.
Authors:  Wang Z.;  Vong S.;  Lei S.-L.
Favorite | TC[WOS]:18 TC[Scopus]:20 | Submit date:2018/12/24
Adi Scheme  Discrete Energy Method  Preconditioned Gmres Method  Two-dimensional Fractional Differential Equation  Weighted And Shifted Grünwald Difference Operator  
A high-order exponential ADI scheme for two dimensional time fractional convection-diffusion equations Journal article
Wang Z., Vong S.. A high-order exponential ADI scheme for two dimensional time fractional convection-diffusion equations[J]. Computers and Mathematics with Applications, 2014, 68(3), 185-196.
Authors:  Wang Z.;  Vong S.
Favorite | TC[WOS]:31 TC[Scopus]:31 | Submit date:2018/12/24
Alternating Direction Implicit (Adi) Method  Convergence  High Order Compact Exponential Difference Scheme  Two Dimensional Fractional Convection-diffusion Equation