UM

Browse/Search Results:  1-10 of 102 Help

Selected(0)Clear Items/Page:    Sort:
Team-wise effective communication in multi-agent reinforcement learning Journal article
Yang, Ming, Zhao, Kaiyan, Wang, Yiming, Dong, Renzhi, Du, Yali, Liu, Furui, Zhou, Mingliang, U, Leong Hou. Team-wise effective communication in multi-agent reinforcement learning[J]. Autonomous Agents and Multi-Agent Systems, 2024, 38(2), 36.
Authors:  Yang, Ming;  Zhao, Kaiyan;  Wang, Yiming;  Dong, Renzhi;  Du, Yali; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:2.0/2.1 | Submit date:2024/08/05
Communication  Competition  Cooperation  Multi-agent System  Reinforcement Learning  
AI trust divide: How recruiter-candidate roles shape tourism personnel decision-making Journal article
Hu, Jihao, Huang, Guo Qiong Ivanka, Wong, Ip Kin Anthony, Wan, Lisa C.. AI trust divide: How recruiter-candidate roles shape tourism personnel decision-making[J]. Annals of Tourism Research, 2024, 109, 103860.
Authors:  Hu, Jihao;  Huang, Guo Qiong Ivanka;  Wong, Ip Kin Anthony;  Wan, Lisa C.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:10.4/11.2 | Submit date:2024/11/05
Artificial Intelligence (Ai)  Motivated Reasoning  Personnel Decision-making Agent  Scenario-based Experiment  Quasi-experiment  
Diffusion mechanism of green building in industrial clusters: An agent-based modeling approach Journal article
Pan, Mi, Zhao, Xiaojing, Li, Zhaotong. Diffusion mechanism of green building in industrial clusters: An agent-based modeling approach[J]. Developments in the Built Environment, 2024, 19, 100504.
Authors:  Pan, Mi;  Zhao, Xiaojing;  Li, Zhaotong
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2024/08/05
Agent-based Modeling (Abm)  Green Building Diffusion  Industrial Cluster  Influencing Factor  Stakeholder  
A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data Journal article
Yang, Zhixue, Ren, Zhouyang, Li, Hui, Sun, Zhiyuan, Feng, Jianbing, Xia, Weiyi. A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data[J]. Applied Energy, 2024, 371, 123668.
Authors:  Yang, Zhixue;  Ren, Zhouyang;  Li, Hui;  Sun, Zhiyuan;  Feng, Jianbing; et al.
Favorite | TC[WOS]:4 TC[Scopus]:7  IF:10.1/10.4 | Submit date:2024/07/04
Chance-constrained  Electricity‑hydrogen Integrated Energy Systems  Hydrogen Energy  Multi-agent Deep Reinforcement Learning  Uncertainty  
It takes two to empower: Customer responses to empowerment recovery in the context of robot service failure Journal article
Yu, Jing (Jasper), Liu, Xiaoming (Rose), He, Mang, Huang, Liman (Mandy), Li, Jun (Justin). It takes two to empower: Customer responses to empowerment recovery in the context of robot service failure[J]. International Journal of Hospitality Management, 2024, 120, 103759.
Authors:  Yu, Jing (Jasper);  Liu, Xiaoming (Rose);  He, Mang;  Huang, Liman (Mandy);  Li, Jun (Justin)
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:9.9/10.3 | Submit date:2024/05/16
Human-robot Interaction  Robot Service Recovery  Service Agent  Customer Empowerment  Service Robot  
Learning-based Autonomous Channel Access in the Presence of Hidden Terminals Journal article
Shao,Yulin, Cai,Yucheng, Wang,Taotao, Guo,Ziyang, Liu,Peng, Luo,Jiajun, Gunduz,Deniz. Learning-based Autonomous Channel Access in the Presence of Hidden Terminals[J]. IEEE Transactions on Mobile Computing, 2024, 23(5), 3680 - 3695.
Authors:  Shao,Yulin;  Cai,Yucheng;  Wang,Taotao;  Guo,Ziyang;  Liu,Peng; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:7.7/6.5 | Submit date:2023/08/03
Hidden Terminal  Multi-agent Deep Reinforcement Learning  Multiple Channel Access  Proximal Policy Optimization  Wi-fi  
TES-CVIDS: A Transmission Efficient Sub-Map Based Collaborative Dense VI-SLAM Framework Journal article
Zhang, Tianjun, Zhang, Lin, Zhang, Fengyi, Zhao, Shengjie, Zhou, Yicong. TES-CVIDS: A Transmission Efficient Sub-Map Based Collaborative Dense VI-SLAM Framework[J]. IEEE Transactions on Intelligent Vehicles, 2024, 1-14.
Authors:  Zhang, Tianjun;  Zhang, Lin;  Zhang, Fengyi;  Zhao, Shengjie;  Zhou, Yicong
Favorite | TC[Scopus]:1  IF:14.0/11.2 | Submit date:2024/05/16
Multi-agent,  Transmission Efficient  Dense Mapping  Visual-inertial Odometry  
Robust collision-free formation control of quadrotor fleets: Trajectory generation and tracking with experimental validation Journal article
Xie, Wei, Yu, Gan, Cabecinhas, David, Silvestre, Carlos, Zhang, Weidong, He, Wei. Robust collision-free formation control of quadrotor fleets: Trajectory generation and tracking with experimental validation[J]. Control Engineering Practice, 2024, 145, 105842.
Authors:  Xie, Wei;  Yu, Gan;  Cabecinhas, David;  Silvestre, Carlos;  Zhang, Weidong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:5.4/4.5 | Submit date:2024/05/02
Collision Avoidance  Formation Control  Multi-agent  Quadrotor  Robust Control  
A Cognitive-Driven Trajectory Prediction Model for Autonomous Driving in Mixed Autonomy Environments Conference paper
Liao, Haicheng, Li, Zhenning, Wang, Chengyue, Wang, Bonan, Kong, Hanlin, Guan, Yanchen, Li, Guofa, Cui, Zhiyong. A Cognitive-Driven Trajectory Prediction Model for Autonomous Driving in Mixed Autonomy Environments[C]:International Joint Conferences on Artificial Intelligence, 2024, 5936-5944.
Authors:  Liao, Haicheng;  Li, Zhenning;  Wang, Chengyue;  Wang, Bonan;  Kong, Hanlin; et al.
Favorite | TC[Scopus]:0 | Submit date:2024/10/10
Multidisciplinary Topics And Applications  Mta  Agent-based And Multi-agent Systems  Mas  Planning And Scheduling  Robotics  
H∞ containment control for multi-unmanned aerial vehicle systems: A self-triggered control scheme Journal article
Wang, Shiyi, Cao, Zhiru, Peng, Chen, Zhu, Kaiqun. H∞ containment control for multi-unmanned aerial vehicle systems: A self-triggered control scheme[J]. Journal of the Franklin Institute, 2024, 361(2), 572-582.
Authors:  Wang, Shiyi;  Cao, Zhiru;  Peng, Chen;  Zhu, Kaiqun
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.7/3.5 | Submit date:2024/02/22
Multi-agent Systems  Uav Systems  Containment Control  Self-triggered Scheme