UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Incremental Weighted Ensemble Broad Learning System For Imbalanced Data Journal article
Yang, Kaixiang, Yu, Zhiwen, Chen, C. L.P., Cao, Wenming, You, Jane J., Wong, Hau San. Incremental Weighted Ensemble Broad Learning System For Imbalanced Data[J]. IEEE Transactions on Knowledge and Data Engineering, 2021.
Authors:  Yang, Kaixiang;  Yu, Zhiwen;  Chen, C. L.P.;  Cao, Wenming;  You, Jane J.; et al.
Favorite | TC[WOS]:51 TC[Scopus]:59  IF:8.9/8.8 | Submit date:2022/05/13
Adaptive Systems  Bagging  Binary Classification  Boosting  Broad Learning System  Imbalance Learning  Incremental Ensemble Learning  Learning Systems  Neural Networks  Sampling Methods  Training  
Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification Journal article
Yu, Zhiwen, Wang, Daxing, Zhao, Zhuoxiong, Chen, C. L.Philip, You, Jane, Wong, Hau San, Zhang, Jun. Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification[J]. IEEE Transactions on Cybernetics, 2019, 49(2), 403-416.
Authors:  Yu, Zhiwen;  Wang, Daxing;  Zhao, Zhuoxiong;  Chen, C. L.Philip;  You, Jane; et al.
Favorite | TC[WOS]:39 TC[Scopus]:41  IF:9.4/10.3 | Submit date:2022/04/15
Bagging  Classification  Classifier Ensemble  Ensemble Learning  Linear Discriminant Analysis (Lda)  
Adaptive Hybrid Feature Selection-Based Classifier Ensemble for Epileptic Seizure Classification Journal article
Alzami, Farrikh, Tang, Juan, Yu, Zhiwen, Wu, Si, Chen, C. L. Philip, You, Jane, Zhang, Jun. Adaptive Hybrid Feature Selection-Based Classifier Ensemble for Epileptic Seizure Classification[J]. IEEE ACCESS, 2018, 6, 29132-29145.
Authors:  Alzami, Farrikh;  Tang, Juan;  Yu, Zhiwen;  Wu, Si;  Chen, C. L. Philip; et al.
Favorite | TC[WOS]:14 TC[Scopus]:21  IF:3.4/3.7 | Submit date:2018/10/30
Epileptic Seizure Detection And Classification  Discrete Wavelet Transform  Hybrid Feature Selection  Classifier Ensemble  Bagging  Rank Aggregation  Adaptive  Genetic Algorithm  Optimization  Machine Learning  
An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets Conference paper
Bee Wah Yap, Khatijahhusna Abd Rani, Hezlin Aryani Abd Rahman, Simon Fong, Zuraida Khairudin, Nik Nik Abdullah. An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets[C], 2014, 13-22.
Authors:  Bee Wah Yap;  Khatijahhusna Abd Rani;  Hezlin Aryani Abd Rahman;  Simon Fong;  Zuraida Khairudin; et al.
Favorite | TC[Scopus]:188 | Submit date:2019/02/13
Bagging  Boosting  Imbalanced Data  Oversampling  Undersampling  
Optimization of bagging classifiers based on SBCB algorithm Conference paper
Zeng X.-D., Chao S., Wong F.. Optimization of bagging classifiers based on SBCB algorithm[C], 2010, 262-267.
Authors:  Zeng X.-D.;  Chao S.;  Wong F.
Favorite | TC[Scopus]:23 | Submit date:2018/12/24
Bagging  Classifier Optimization  Ensemble Learning  Selective Ensemble