×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
Authors
LEONG IENG TAK [3]
QIAN TAO [1]
KOU KIT IAN [1]
Document Type
Journal article [6]
Date Issued
2023 [1]
2021 [3]
2015 [2]
Language
英語English [6]
Source Publication
JOURNAL OF MATHE... [2]
Wave Motion [2]
Complex Variable... [1]
Journal of Geome... [1]
Indexed By
SCIE [5]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Weak pre-orthogonal adaptive Fourier decomposition in Bergman spaces of pseudoconvex domains
Journal article
Wu, Hio Tong, Leong, Ieng Tak, Qian, Tao. Weak pre-orthogonal adaptive Fourier decomposition in Bergman spaces of pseudoconvex domains[J]. Complex Variables and Elliptic Equations, 2023, 68(4), 568 - 577.
Authors:
Wu, Hio Tong
;
Leong, Ieng Tak
;
Qian, Tao
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
0.6
/
0.7
|
Submit date:2022/05/13
Bergman Kernel
Bergman Space
Boundary Vanishing Property
Pseudoconvex Domain
Weak Maximal Selection Principle
Weak Pre-orthogonal Adaptive Fourier Decomposition
Reproducing Kernels of Some Weighted Bergman Spaces
Journal article
Deng, Guan Tie, Huang, Yun, Qian, Tao. Reproducing Kernels of Some Weighted Bergman Spaces[J]. Journal of Geometric Analysis, 2021, 31(10), 9527-9550.
Authors:
Deng, Guan Tie
;
Huang, Yun
;
Qian, Tao
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
IF:
1.2
/
1.2
|
Submit date:2021/12/08
Reproducing Kernel
Reproducing Kernel Hilbert Space
Weighted Bergman Spaces
Adaptive rational approximation in Bergman space on bounded symmetric domain
Journal article
Wu, Hio Tong, Leong, Ieng Tak, Qian, Tao. Adaptive rational approximation in Bergman space on bounded symmetric domain[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 506, 25591.
Authors:
Wu, Hio Tong
;
Leong, Ieng Tak
;
Qian, Tao
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
IF:
1.2
/
1.3
|
Submit date:2022/03/04
Bergman Kernel
Bergman Space
Boundary Vanishing Property
Generalized Kernel Functions
Maximum Selection Principle
Pre-orthogonal Adaptive Fourier Decomposition
Adaptive Rational Approximation in Bergman Space on Bounded Symmetric Domain
Journal article
Wu, Hio Tong, Leong, Ieng Tak, Qian, Tao. Adaptive Rational Approximation in Bergman Space on Bounded Symmetric Domain[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 506, 25591.
Authors:
Wu, Hio Tong
;
Leong, Ieng Tak
;
Qian, Tao
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
IF:
1.2
/
1.3
|
Submit date:2022/08/30
Bergman Space
Bergman Kernel
Reproducing Kernel Hilbert Space
Pre-orthogonal Adaptive Fourier Decomposition (Poafd)
Generalized Kernel Functions
Boundary Vanishing Property
Maximum Selection Principle
Computational geometric and boundary value properties of Oblate Spheroidal Quaternionic Wave Functions
Journal article
Morais,J., Pérez-de la Rosa,M. A., Kou,K. I.. Computational geometric and boundary value properties of Oblate Spheroidal Quaternionic Wave Functions[J]. Wave Motion, 2015, 57, 112-128.
Authors:
Morais,J.
;
Pérez-de la Rosa,M. A.
;
Kou,K. I.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
6
IF:
2.1
/
1.9
|
Submit date:2021/03/11
Bergman Kernel Function
Ferrer's Associated Legendre Functions
Helmholtz Equation
Oblate Spheroidal Wave Functions
Quaternionic Analysis
Computational geometric and boundary value properties of Oblate Spheroidal Quaternionic Wave Functions
Journal article
Morais J., Perez-de la Rosa M.A., Kou K.I.. Computational geometric and boundary value properties of Oblate Spheroidal Quaternionic Wave Functions[J]. Wave Motion, 2015, 57, 112-128.
Authors:
Morais J.
;
Perez-de la Rosa M.A.
;
Kou K.I.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
6
|
Submit date:2019/02/13
Bergman Kernel Function
Ferrer's Associated Legendre Functions
Helmholtz Equation
Oblate Spheroidal Wave Functions
Quaternionic Analysis