×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scie... [12]
Authors
JIN XIAO QING [4]
SUN HAIWEI [4]
LEI SIU LONG [4]
Document Type
Journal article [12]
Date Issued
2019 [1]
2018 [2]
2017 [2]
2016 [1]
2015 [2]
2008 [1]
More...
Language
英語English [10]
Source Publication
Numerical Linear... [3]
Applied Mathemat... [1]
Computers and Ma... [1]
INTERNATIONAL JO... [1]
Journal of Compu... [1]
Journal of Scien... [1]
More...
Indexed By
SCIE [9]
CPCI-S [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 12
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Title Ascending
Title Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains
Journal article
Chen,Xu, Deng,Si Wen, Lei,Siu Long. A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains[J]. Journal of Scientific Computing, 2019, 80(2), 1033-1057.
Authors:
Chen,Xu
;
Deng,Si Wen
;
Lei,Siu Long
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
IF:
2.8
/
2.7
|
Submit date:2021/03/11
Block-circulant-circulant-block Matrix
Convex Domain
Finite Volume Method
Preconditioner
Space-fractional Diffusion Equation
A separable preconditioner for time-space fractional Caputo-Riesz di usion equations
Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A separable preconditioner for time-space fractional Caputo-Riesz di usion equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2018, 827-853.
Authors:
Lin, X.L.
;
Ng, M.K.
;
Sun, H. W.
Favorite
|
IF:
1.9
/
1.3
|
Submit date:2022/07/25
Block lower triangular
Toeplitz-like matrix
Diagonalization
Separable
Block \epsilon-circulant preconditioner
Time-space fractional diffusion equations
A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations
Journal article
Lin, Xuelei, Ng, Michael K., Sun, Haiwei. A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations[J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11(4), 827-853.
Authors:
Lin, Xuelei
;
Ng, Michael K.
;
Sun, Haiwei
Favorite
|
TC[WOS]:
17
TC[Scopus]:
17
IF:
1.9
/
1.3
|
Submit date:2018/10/30
Block Lower Triangular
Toeplitz-like Matrix
Diagonalization
Separable
Block Is An Element of-circulAnt Preconditioner
Time-space Fractional Diffusion Equations
A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations
Journal article
Huang, Yun-Chi, Lei, Siu-Long. A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations[J]. NUMERICAL ALGORITHMS, 2017, 76(3), 605-616.
Authors:
Huang, Yun-Chi
;
Lei, Siu-Long
Favorite
|
TC[WOS]:
24
TC[Scopus]:
25
IF:
1.7
/
1.9
|
Submit date:2018/10/30
Block Lower Triangular Toeplitz Matrix With Dense Toeplitz Blocks
Circulant-and-skew-circulant Representation Of Toeplitz Matrix Inversion
Divide-and-conquer Strategy
Fast Fourier Transform
Time-space Fractional Partial Differential Equations
Fast algorithms for high-order numerical methods for space-fractional diffusion equations
Journal article
Lei, Siu-Long, Huang, Yun-Chi. Fast algorithms for high-order numerical methods for space-fractional diffusion equations[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94(5), 1062-1078.
Authors:
Lei, Siu-Long
;
Huang, Yun-Chi
Favorite
|
TC[WOS]:
34
TC[Scopus]:
36
IF:
1.7
/
1.5
|
Submit date:2018/10/30
Fractional Diffusion Equation
Fourth-order Discretization
Boundary Value Method
Crank-nicolson Preconditioner
Block-circulant Preconditioner
Gmres Method
Circulant- And Skew-circulant Representation Of Toeplitz Matrix Inversion
A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation
Journal article
Lin,Xue lei, Lu,Xin, Ng,Micheal K., Sun,Hai Wei. A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation[J]. Journal of Computational Physics, 2016, 323, 204-218.
Authors:
Lin,Xue lei
;
Lu,Xin
;
Ng,Micheal K.
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
10
TC[Scopus]:
10
|
Submit date:2019/05/27
Block Lower Triangular Toeplitz Matrix
Block Ε-circulant Approximation
Fractional Sub-diffusion Equations
Multigrid Method
Fast numerical solution for fractional diffusion equations by exponential quadrature rule
Journal article
Lu,Xin, Pang,Hong Kui, Sun,Hai Wei. Fast numerical solution for fractional diffusion equations by exponential quadrature rule[J]. Numerical Linear Algebra with Applications, 2015, 22(5), 866-882.
Authors:
Lu,Xin
;
Pang,Hong Kui
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
51
TC[Scopus]:
26
|
Submit date:2019/05/27
Block Triangular Toeplitz Matrix
Block ε{Lunate}-circulant Matrix
Fourier Transform
Fractional Sub-diffusion Equations
Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations
Journal article
Lu X., Pang H.-K., Sun H.-W.. Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations[J]. Numerical Linear Algebra with Applications, 2015, 22(5), 866-882.
Authors:
Lu X.
;
Pang H.-K.
;
Sun H.-W.
Favorite
|
TC[WOS]:
51
TC[Scopus]:
55
|
Submit date:2019/02/13
Block Triangular Toeplitz Matrix
Block ε{Lunate}-circulant Matrix
Fourier Transform
Fractional Sub-diffusion Equations
A survey and some extensions of T. Chan's preconditioner
Journal article
Jin X.-Q., Wei Y.-M.. A survey and some extensions of T. Chan's preconditioner[J]. Linear Algebra and Its Applications, 2008, 428(2-3), 403-412.
Authors:
Jin X.-Q.
;
Wei Y.-M.
Favorite
|
TC[WOS]:
11
TC[Scopus]:
11
|
Submit date:2019/02/11
Block Operator
Circulant Matrix
Point Operator
T. Chan's circulanT.precondiT.oner
T. Chan's precondiT.oner
Toeplitz Matrix
BCCB preconditioners for solving linear systems from delay differential equations
Journal article
Cai M.-C., Jin X.-Q.. BCCB preconditioners for solving linear systems from delay differential equations[J]. Computers and Mathematics with Applications, 2005, 50(1-2), 281-288.
Authors:
Cai M.-C.
;
Jin X.-Q.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
3
|
Submit date:2019/02/11
Bccb Preconditioner
Block-circulant Preconditioner
Bvm
Delay Differential Equations
Gmres Method
Toeplitz Matrix