UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Robust fast method for variable-order time-fractional diffusion equations without regularity assumptions of the true solutions Journal article
Zhang, Jiali, Fang, Zhi Wei, Sun, Hai Wei. Robust fast method for variable-order time-fractional diffusion equations without regularity assumptions of the true solutions[J]. Applied Mathematics and Computation, 2022, 430, 127273.
Authors:  Zhang, Jiali;  Fang, Zhi Wei;  Sun, Hai Wei
Favorite | TC[WOS]:4 TC[Scopus]:6  IF:3.5/3.1 | Submit date:2022/06/13
Exponential-sum-approximation Method  Fast Algorithm  Variable-order Caputo Fractional Derivative  
Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations Journal article
Zhang, Jia Li, Fang, Zhi Wei, Sun, Hai Wei. Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations[J]. Numerical Mathematics, 2022, 15(1), 200-226.
Authors:  Zhang, Jia Li;  Fang, Zhi Wei;  Sun, Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:1.9/1.3 | Submit date:2022/05/17
Convergence  Exponential-sum-approximation Method  Fast Algorithm  Stability  Time-fractional Sub-diffusion Equation  Variable-order Caputo Fractional Derivative  
A fast linearized numerical method for nonlinear time-fractional diffusion equations Journal article
Lyu,Pin, Vong,Seakweng. A fast linearized numerical method for nonlinear time-fractional diffusion equations[J]. Numerical Algorithms, 2021, 87(1), 381-408.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:1.7/1.9 | Submit date:2021/03/09
Caputo Derivative  Nonlinear Time-fractional Diffusion Equation  Linearized Method  
Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian Journal article
Gu,Xian Ming, Sun,Hai Wei, Zhang,Yanzhi, Zhao,Yong Liang. Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian[J]. Mathematical Methods in the Applied Sciences, 2021, 44(1), 441-463.
Authors:  Gu,Xian Ming;  Sun,Hai Wei;  Zhang,Yanzhi;  Zhao,Yong Liang
Favorite | TC[WOS]:21 TC[Scopus]:21  IF:2.1/2.0 | Submit date:2021/03/09
Caputo Derivative  Circulant Preconditioner  Fractional Diffusion Equations  Integral Fractional Laplacian  Krylov Subspace Solvers  
Fast implicit difference schemes for time-space fractional diffusion Journal article
Gu, X.M., Sun, H. W., Zhang, Y.Z., Zhao, Y.L.. Fast implicit difference schemes for time-space fractional diffusion[J]. Mathematical Methods in the Applied Sciences, 2021, 441-463.
Authors:  Gu, X.M.;  Sun, H. W.;  Zhang, Y.Z.;  Zhao, Y.L.
Favorite | TC[WOS]:21 TC[Scopus]:21 | Submit date:2022/07/25
Fractional Diffusion Equations  Caputo Derivative  Integral Fractional Laplacian  Circulant Preconditioner  Krylov Subspace Solvers.  
A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations Journal article
Fang,Zhi Wei, Sun,Hai Wei, Wang,Hong. A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations[J]. Computers and Mathematics with Applications, 2020, 80(5), 1443-1458.
Authors:  Fang,Zhi Wei;  Sun,Hai Wei;  Wang,Hong
Favorite | TC[WOS]:43 TC[Scopus]:46  IF:2.9/2.6 | Submit date:2021/03/09
Fast And Memory-saving Algorithm  Shifted Binary Block Partition  Time-fractional Diffusion Equations  Uniform Polynomial Approximation  Variable-order Caputo Fractional Derivative  
An efficient numerical method for q-fractional differential equations Journal article
Lyu,Pin, Vong,Seakweng. An efficient numerical method for q-fractional differential equations[J]. Applied Mathematics Letters, 2020, 103, 106156.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:5 TC[Scopus]:7  IF:2.9/2.6 | Submit date:2021/03/09
Caputo Q-fractional Derivative  Nonuniform Mesh  Fractional Nonlinear Equation  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions Journal article
Pin, Lyu, Seakweng, Vong. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019.
Authors:  Pin, Lyu;  Seakweng, Vong
Favorite | TC[WOS]:12 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2022/07/01
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions Journal article
Lyu,Pin, Vong,Seakweng. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 36(3), 579-600.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:12 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2021/03/09
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation Journal article
Lyu,Pin, Vong,Seakweng. A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation[J]. Journal of Scientific Computing, 2019, 80(3), 1607-1628.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:41 TC[Scopus]:40  IF:2.8/2.7 | Submit date:2021/03/09
Caputo Derivative  Graded Mesh  High-order Method  Nonuniform Mesh  Time-fractional Nonlinear Equation