UM

Browse/Search Results:  1-10 of 45 Help

Selected(0)Clear Items/Page:    Sort:
A Mixed-Type Circulant Preconditioner for a Nonlocal Elastic Model Journal article
Huang Yuan Yuan, LEI SIU LONG. A Mixed-Type Circulant Preconditioner for a Nonlocal Elastic Model[J]. East Asian Journal on Applied Mathematics, 2023, 13(4), 791-812.
Authors:  Huang Yuan Yuan;  LEI SIU LONG
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.2/1.0 | Submit date:2023/12/14
Generalized Nonlocal Elastic Model  Peridynamic  Fractional Differential Operator  Toeplitz Linear System  Circulant Preconditioner  
A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations Journal article
Yu, Jian Wei, Zhang, Chun Hua, Huang, Xin, Wang, Xiang. A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations[J]. Japan Journal of Industrial and Applied Mathematics, 2023, 40(1), 537-562.
Authors:  Yu, Jian Wei;  Zhang, Chun Hua;  Huang, Xin;  Wang, Xiang
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.7/0.7 | Submit date:2023/01/30
Circulant Preconditioner  Linear System  Nonlinear Space-fractional Diffusion Equations  Preconditioned Conjugated Gradient Method  Spectrum  
A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations Journal article
Huang,Xin, Fang,Zhi Wei, Sun,Hai Wei, Zhang,Chun Hua. A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations[J]. Linear and Multilinear Algebra, 2022, 70(16), 3081-3096.
Authors:  Huang,Xin;  Fang,Zhi Wei;  Sun,Hai Wei;  Zhang,Chun Hua
Favorite | TC[WOS]:11 TC[Scopus]:7  IF:0.9/1.0 | Submit date:2021/03/09
Distributed-order  Space-fractional Diffusion Equations  Circulant Preconditioner  Preconditioned Conjugated Gradient Method  
A fast algorithm for two-dimensional distributed-order time-space fractional diffusion equations Journal article
Sun, Lu Yao, Fang, Zhi Wei, Lei, Siu Long, Sun, Hai Wei, Zhang, Jia Li. A fast algorithm for two-dimensional distributed-order time-space fractional diffusion equations[J]. Applied Mathematics and Computation, 2022, 425, 127095.
Authors:  Sun, Lu Yao;  Fang, Zhi Wei;  Lei, Siu Long;  Sun, Hai Wei;  Zhang, Jia Li
Favorite | TC[WOS]:9 TC[Scopus]:11  IF:3.5/3.1 | Submit date:2022/05/13
Block-circulant-circulant-block Preconditioner  Distributed-order Fractional Derivative  Exponential-sum-approximation Method  Fast Algorithm  Stability And Convergence  Time-space Fractional Equation  
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations Journal article
Zhang,Qifeng, Zhang,Lu, Sun,Hai wei. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 389, 113355.
Authors:  Zhang,Qifeng;  Zhang,Lu;  Sun,Hai wei
Favorite | TC[WOS]:22 TC[Scopus]:22  IF:2.1/2.1 | Submit date:2021/03/09
Boundedness  Circulant Preconditioner  Crank–nicolson Scheme  Space Fractional Ginzburg–landau Equation  
Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations Journal article
Pang,Hong Kui, Qin,Hai Hua, Sun,Hai Wei, Ma,Ting Ting. Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 85, 18-29.
Authors:  Pang,Hong Kui;  Qin,Hai Hua;  Sun,Hai Wei;  Ma,Ting Ting
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:2.9/2.6 | Submit date:2021/03/09
Circulant-based Preconditioner  Decay Property  Finite Difference Method  Fractional Diffusion Equation  Toeplitz-like  
Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian Journal article
Gu,Xian Ming, Sun,Hai Wei, Zhang,Yanzhi, Zhao,Yong Liang. Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian[J]. Mathematical Methods in the Applied Sciences, 2021, 44(1), 441-463.
Authors:  Gu,Xian Ming;  Sun,Hai Wei;  Zhang,Yanzhi;  Zhao,Yong Liang
Favorite | TC[WOS]:21 TC[Scopus]:21  IF:2.1/2.0 | Submit date:2021/03/09
Caputo Derivative  Circulant Preconditioner  Fractional Diffusion Equations  Integral Fractional Laplacian  Krylov Subspace Solvers  
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations Journal article
Zhang, Q. F., Zhang, L., Sun, H. W.. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 113355-113355.
Authors:  Zhang, Q. F.;  Zhang, L.;  Sun, H. W.
Favorite | TC[WOS]:22 TC[Scopus]:22  IF:2.1/2.1 | Submit date:2022/07/25
Space Fractional Ginzburg-landau Equation  Crank–nicolson Scheme  Boundedness  Circulant Preconditioner  
Fast implicit difference schemes for time-space fractional diffusion Journal article
Gu, X.M., Sun, H. W., Zhang, Y.Z., Zhao, Y.L.. Fast implicit difference schemes for time-space fractional diffusion[J]. Mathematical Methods in the Applied Sciences, 2021, 441-463.
Authors:  Gu, X.M.;  Sun, H. W.;  Zhang, Y.Z.;  Zhao, Y.L.
Favorite | TC[WOS]:21 TC[Scopus]:21 | Submit date:2022/07/25
Fractional Diffusion Equations  Caputo Derivative  Integral Fractional Laplacian  Circulant Preconditioner  Krylov Subspace Solvers.  
An optimal preconditioner for tensor equations involving Einstein product Journal article
Xie,Ze Jia, Jin,Xiao Qing, Sin,Vai Kuong. An optimal preconditioner for tensor equations involving Einstein product[J]. Linear and Multilinear Algebra, 2020, 68(5), 886-902.
Authors:  Xie,Ze Jia;  Jin,Xiao Qing;  Sin,Vai Kuong
Favorite | TC[WOS]:11 TC[Scopus]:13  IF:0.9/1.0 | Submit date:2021/03/09
Tensor  Circulant Tensor  Toeplitz Tensor  Optimal Preconditioner  Tensor Equation