×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scie... [14]
Authors
JIN XIAO QING [9]
LEI SIU LONG [6]
SUN HAIWEI [2]
SIN VAI KUONG [2]
Document Type
Journal article [13]
Conference paper [1]
Date Issued
2022 [1]
2019 [1]
2018 [2]
2017 [1]
2005 [2]
2004 [3]
More...
Language
英語English [10]
Source Publication
Applied Mathemat... [2]
Computers and Ma... [2]
Numerical Linear... [2]
Advances in Math... [1]
Faculty of Scien... [1]
INTERNATIONAL JO... [1]
More...
Indexed By
SCIE [12]
CPCI-S [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 14
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
A fast algorithm for two-dimensional distributed-order time-space fractional diffusion equations
Journal article
Sun, Lu Yao, Fang, Zhi Wei, Lei, Siu Long, Sun, Hai Wei, Zhang, Jia Li. A fast algorithm for two-dimensional distributed-order time-space fractional diffusion equations[J]. Applied Mathematics and Computation, 2022, 425, 127095.
Authors:
Sun, Lu Yao
;
Fang, Zhi Wei
;
Lei, Siu Long
;
Sun, Hai Wei
;
Zhang, Jia Li
Favorite
|
TC[WOS]:
9
TC[Scopus]:
11
IF:
3.5
/
3.1
|
Submit date:2022/05/13
Block-circulant-circulant-block Preconditioner
Distributed-order Fractional Derivative
Exponential-sum-approximation Method
Fast Algorithm
Stability And Convergence
Time-space Fractional Equation
A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains
Journal article
Chen,Xu, Deng,Si Wen, Lei,Siu Long. A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains[J]. Journal of Scientific Computing, 2019, 80(2), 1033-1057.
Authors:
Chen,Xu
;
Deng,Si Wen
;
Lei,Siu Long
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
IF:
2.8
/
2.7
|
Submit date:2021/03/11
Block-circulant-circulant-block Matrix
Convex Domain
Finite Volume Method
Preconditioner
Space-fractional Diffusion Equation
A separable preconditioner for time-space fractional Caputo-Riesz di usion equations
Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A separable preconditioner for time-space fractional Caputo-Riesz di usion equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2018, 827-853.
Authors:
Lin, X.L.
;
Ng, M.K.
;
Sun, H. W.
Favorite
|
IF:
1.9
/
1.3
|
Submit date:2022/07/25
Block lower triangular
Toeplitz-like matrix
Diagonalization
Separable
Block \epsilon-circulant preconditioner
Time-space fractional diffusion equations
A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations
Journal article
Lin, Xuelei, Ng, Michael K., Sun, Haiwei. A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations[J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11(4), 827-853.
Authors:
Lin, Xuelei
;
Ng, Michael K.
;
Sun, Haiwei
Favorite
|
TC[WOS]:
17
TC[Scopus]:
17
IF:
1.9
/
1.3
|
Submit date:2018/10/30
Block Lower Triangular
Toeplitz-like Matrix
Diagonalization
Separable
Block Is An Element of-circulAnt Preconditioner
Time-space Fractional Diffusion Equations
Fast algorithms for high-order numerical methods for space-fractional diffusion equations
Journal article
Lei, Siu-Long, Huang, Yun-Chi. Fast algorithms for high-order numerical methods for space-fractional diffusion equations[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94(5), 1062-1078.
Authors:
Lei, Siu-Long
;
Huang, Yun-Chi
Favorite
|
TC[WOS]:
34
TC[Scopus]:
36
IF:
1.7
/
1.5
|
Submit date:2018/10/30
Fractional Diffusion Equation
Fourth-order Discretization
Boundary Value Method
Crank-nicolson Preconditioner
Block-circulant Preconditioner
Gmres Method
Circulant- And Skew-circulant Representation Of Toeplitz Matrix Inversion
BCCB preconditioners for solving linear systems from delay differential equations
Journal article
Cai M.-C., Jin X.-Q.. BCCB preconditioners for solving linear systems from delay differential equations[J]. Computers and Mathematics with Applications, 2005, 50(1-2), 281-288.
Authors:
Cai M.-C.
;
Jin X.-Q.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
3
|
Submit date:2019/02/11
Bccb Preconditioner
Block-circulant Preconditioner
Bvm
Delay Differential Equations
Gmres Method
Toeplitz Matrix
Circulant preconditioners for solving singular perturbation delay differential equations
Journal article
Jin X.-Q., Lei S.-L., Wei Y.-M.. Circulant preconditioners for solving singular perturbation delay differential equations[J]. Numerical Linear Algebra with Applications, 2005, 12(2-3), 327-336.
Authors:
Jin X.-Q.
;
Lei S.-L.
;
Wei Y.-M.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
8
|
Submit date:2019/02/11
Block-circulant Preconditioner
Bvm
Gmres Method
Spddes
BCCB preconditioners for systems of BVM-based numerical integrators
Journal article
Lei S.-L., Jin X.-Q.. BCCB preconditioners for systems of BVM-based numerical integrators[J]. Numerical Linear Algebra with Applications, 2004, 11(1), 25-40.
Authors:
Lei S.-L.
;
Jin X.-Q.
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
|
Submit date:2019/02/11
Bccb Preconditioner
Block-circulant Preconditioner
Bvm
Gmres Method
Ode
Toeplitz Matrix
Preconditioned WR-LMF-based method for ODE systems
Journal article
Jin X.-Q., Sin V.-K., Song L.-L.. Preconditioned WR-LMF-based method for ODE systems[J]. Journal of Computational and Applied Mathematics, 2004, 162(2), 431-444.
Authors:
Jin X.-Q.
;
Sin V.-K.
;
Song L.-L.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
|
Submit date:2019/02/11
Block-circulant Preconditioner
Bvm
Gmres Method
Ode
Wr Method
Circulant preconditioners for solving differential equations with multidelays
Journal article
Jin X.-Q., Lei S.-L., Wei Y.-M.. Circulant preconditioners for solving differential equations with multidelays[J]. Computers and Mathematics with Applications, 2004, 47(8-9), 1429-1436.
Authors:
Jin X.-Q.
;
Lei S.-L.
;
Wei Y.-M.
Favorite
|
TC[WOS]:
9
TC[Scopus]:
8
|
Submit date:2019/02/11
Block-circulant Preconditioner
Bvm
Differential Equation With Multidelays
Gm-res Method