UM

Browse/Search Results:  1-10 of 14 Help

Selected(0)Clear Items/Page:    Sort:
Clifford-Valued Distributed Optimization Based on Recurrent Neural Networks Journal article
Xia, Zicong, Liu, Yang, Kou, Kit Ian, Wang, Jun. Clifford-Valued Distributed Optimization Based on Recurrent Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(10), 7248 - 7259.
Authors:  Xia, Zicong;  Liu, Yang;  Kou, Kit Ian;  Wang, Jun
Favorite | TC[WOS]:31 TC[Scopus]:30  IF:10.2/10.4 | Submit date:2022/05/17
Clifford-valued Distributed Optimization  Clifford-valued Neural Networks  Lyapunov Theory  Nonsmooth Analysis  
Clifford coherent state transforms on spheres Journal article
Dang, Pei, Mourao, Jose, Nunes, Joao P., Qian, Tao. Clifford coherent state transforms on spheres[J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124, 225-232.
Authors:  Dang, Pei;  Mourao, Jose;  Nunes, Joao P.;  Qian, Tao
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.6/1.3 | Submit date:2018/10/30
Clifford Analysis  Coherent State Transforms  Cauchy-kowalewski Extension  
Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis Journal article
Qian T., Zhang L.-M.. Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis[J]. Applied Mathematics, 2013, 28(4), 505-530.
Authors:  Qian T.;  Zhang L.-M.
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:1.2/0.8 | Submit date:2019/02/11
Adaptive Fourier Decomposition  Blaschke Form  Digital Signal Processing  Hardy Space  Higher Dimensional Signal Analysis In Several Complex Variables And The Clifford Algebra settIng  Möbius Transform  Mono-component  Rational Approximation  Rational Orthogonal System  Time-frequency Distribution  Uncertainty Principle  
Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis Journal article
Kou K., Morais J., Zhang Y.. Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis[J]. Mathematical Methods in the Applied Sciences, 2013, 36(9), 1028.
Authors:  Kou K.;  Morais J.;  Zhang Y.
Favorite | TC[WOS]:49 TC[Scopus]:60  IF:2.1/2.0 | Submit date:2018/10/30
Clifford Analysis  Fourier Transform  Linear Canonical Transform  Offset Linear Canonical Transform  Prolate Spheroidal Wave Functions  
A class of Fourier multipliers on starlike Lipschitz surfaces Journal article
Li P., Leong I.T., Qian T.. A class of Fourier multipliers on starlike Lipschitz surfaces[J]. Journal of Functional Analysis, 2011, 261(6), 1415-1445.
Authors:  Li P.;  Leong I.T.;  Qian T.
Favorite | TC[WOS]:1 TC[Scopus]:2 | Submit date:2019/02/11
Clifford Analysis  Fourier Multiplier  Monogenic Function  Singular Integral  Starlike Lipschitz Surface  
Hilbert transforms on the sphere with the Clifford algebra setting Journal article
Qian T., Yang Y.. Hilbert transforms on the sphere with the Clifford algebra setting[J]. Journal of Fourier Analysis and Applications, 2009, 15(6), 753-774.
Authors:  Qian T.;  Yang Y.
Favorite | TC[WOS]:13 TC[Scopus]:21  IF:1.2/1.2 | Submit date:2019/02/11
Cauchy Singular Integral  Clifford Analysis  Conjugate Poisson Kernel  Double-layer Potential  Hilbert Transformation  Poisson Kernel  Schwarz Kernel  
Two integral operators in Clifford analysis Journal article
Gong Y.F., Leong I.T., Qian T.. Two integral operators in Clifford analysis[J]. Journal of Mathematical Analysis and Applications, 2009, 354(2), 435-444.
Authors:  Gong Y.F.;  Leong I.T.;  Qian T.
Favorite | TC[WOS]:22 TC[Scopus]:24 | Submit date:2019/02/11
Clifford Analysis  Monogenic Fock Space  Segal-bargmann Space  
The Mehler formula for the generalized Clifford-Hermite polynomials Journal article
Brackx F., De Schepper N., Kou K.I., Sommen F.. The Mehler formula for the generalized Clifford-Hermite polynomials[J]. Acta Mathematica Sinica, English Series, 2007, 23(4), 697-704.
Authors:  Brackx F.;  De Schepper N.;  Kou K.I.;  Sommen F.
Favorite | TC[WOS]:6 TC[Scopus]:7 | Submit date:2019/02/13
Clifford Analysis  Fractional Fourier Transform  Hermite Polynomials  
The Mehler formula for the generalized Clifford-Hermite polynomials Journal article
Brackx,F., De Schepper,N., Kou,K. I., Sommen,F.. The Mehler formula for the generalized Clifford-Hermite polynomials[J]. Acta Mathematica Sinica, English Series, 2007, 23(4), 697-704.
Authors:  Brackx,F.;  De Schepper,N.;  Kou,K. I.;  Sommen,F.
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:0.8/0.8 | Submit date:2021/03/11
Clifford Analysis  Fractional Fourier Transform  Hermite Polynomials  
An elementary proof of the Paley-Wiener theorem in C" Journal article
Y. YANG, T. QIAN. An elementary proof of the Paley-Wiener theorem in C"[J]. Complex Variables and Elliptic Equations, 2006, 51(5-6), 599-609.
Authors:  Y. YANG;  T. QIAN
Favorite |   IF:0.6/0.7 | Submit date:2019/06/10
Fourier Analysis  Paley-wiener Theorem  Exponential Function  Clifford Algebra