UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Maximum correntropy criterion for convex and semi-nonnegative matrix factorization Conference paper
Qin A., Shang Z., Tian J., Li A., Wang Y., Tang Y.Y.. Maximum correntropy criterion for convex and semi-nonnegative matrix factorization[C], 2017, 1856-1861.
Authors:  Qin A.;  Shang Z.;  Tian J.;  Li A.;  Wang Y.; et al.
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/11
Clustering  Maximum Correntropy Criterion  Nonnegative Matrix Factorization  
Maximum Correntropy Criterion for Convex and Semi-Nonnegative Matrix Factorization Conference paper
Qin, Anyong, Shang, Zhaowei, Tian, Jinyu, Li, Ailin, Wang, Yulong, Tang, Yuan Yan, IEEE. Maximum Correntropy Criterion for Convex and Semi-Nonnegative Matrix Factorization[C], 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE, 2017, 1856-1861.
Authors:  Qin, Anyong;  Shang, Zhaowei;  Tian, Jinyu;  Li, Ailin;  Wang, Yulong; et al.
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2018/10/30
Maximum Correntropy Criterion  Nonnegative Matrix Factorization  Clustering  
Sequential combination methods for data clustering analysis Journal article
Qian Y., Suen C.Y., Tang Y., Qian Y., Suen C.Y., Tang Y.. Sequential combination methods for data clustering analysis[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2002, 17(2), 118-128.
Authors:  Qian Y.;  Suen C.Y.;  Tang Y.;  Qian Y.;  Suen C.Y.; et al.
Favorite | TC[WOS]:5 TC[Scopus]:9  IF:1.2/1.7 | Submit date:2019/02/11
Clustering Combination  Clustering Criterion  Linear Additive Model  Probabilistic Relaxation