UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
A fast convex hull algorithm inspired by human visual perception Journal article
Liu, Runzong, Tang, Yuan Yan, Chan, Patrick P. K.. A fast convex hull algorithm inspired by human visual perception[J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77(23), 31221-31237.
Authors:  Liu, Runzong;  Tang, Yuan Yan;  Chan, Patrick P. K.
Favorite | TC[WOS]:2 TC[Scopus]:4  IF:3.0/2.9 | Submit date:2019/01/17
Convex Hull  Computational Geometry  Affine Transformation  Point Pattern  High Dimension  
An enhanced version and an incremental learning version of visual-attention-imitation convex hull algorithm Journal article
Runzong Liu, Yuan Yan Tang, Bin Fang, Jingrui Pi. An enhanced version and an incremental learning version of visual-attention-imitation convex hull algorithm[J]. Neurocomputing, 2014, 133, 231-236.
Authors:  Runzong Liu;  Yuan Yan Tang;  Bin Fang;  Jingrui Pi
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:5.5/5.5 | Submit date:2019/04/30
Convex Hull  Computational Geometry  Algorithm  Incremental Learning  
A fast and complete convex-hull algorithm architecture based on ellipse and elastic ellipse methods Journal article
Wu X.G., Fang B., Tang Y.Y., Wang P.S.-P.. A fast and complete convex-hull algorithm architecture based on ellipse and elastic ellipse methods[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2013, 27(8).
Authors:  Wu X.G.;  Fang B.;  Tang Y.Y.;  Wang P.S.-P.
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2019/02/11
Convex Hull  Ellipse Method  Computational Geometry  Extreme Points  Eight Directions  
A fast convex hull algorithm with maximum inscribed circle affine transformation Journal article
Liu R., Fang B., Tang Y.Y., Wen J., Qian J.. A fast convex hull algorithm with maximum inscribed circle affine transformation[J]. Neurocomputing, 2012, 77(1), 212-221.
Authors:  Liu R.;  Fang B.;  Tang Y.Y.;  Wen J.;  Qian J.
Favorite | TC[WOS]:17 TC[Scopus]:23 | Submit date:2019/02/11
Affine Transformation  Computational Geometry  Convex Hull  Point Pattern  Shape Analysis  
Layer-Based Representation of Polyhedrons for Point Containment Tests Journal article
Wencheng Wang, Jing Li, Hanqiu Sun, Enhua Wu. Layer-Based Representation of Polyhedrons for Point Containment Tests[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(1), 73-83.
Authors:  Wencheng Wang;  Jing Li;  Hanqiu Sun;  Enhua Wu
Favorite | TC[WOS]:9 TC[Scopus]:11  IF:4.7/5.1 | Submit date:2019/02/13
Computational Geometry  Point Containment  Polyhedron  Solid Representation  
Point-in-polygon tests by convex decomposition Journal article
Jing Li, Wencheng Wang, Enhua Wu. Point-in-polygon tests by convex decomposition[J]. Computers and Graphics (Pergamon), 2007, 31(4), 636-648.
Authors:  Jing Li;  Wencheng Wang;  Enhua Wu
Favorite | TC[WOS]:18 TC[Scopus]:27  IF:2.5/2.3 | Submit date:2019/02/13
Bsp Trees  Computational Geometry  Convex Decomposition  Point Containment  Polygon  
2D point-in-polygon test by classifying edges into layers Journal article
WenchengWang, JingLi, Enhua Wu. 2D point-in-polygon test by classifying edges into layers[J]. Computers and Graphics (Pergamon), 2005, 29(3), 427-439.
Authors:  WenchengWang;  JingLi;  Enhua Wu
Favorite | TC[WOS]:19 TC[Scopus]:25  IF:2.5/2.3 | Submit date:2019/02/13
Computational Geometry  Layered Edges  Point Containment  Polygon