UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
A stabilized fully-discrete scheme for phase field crystal equation Journal article
Zhang, Fan, Li, Dongfang, Sun, Hai Wei, Zhang, Jia Li. A stabilized fully-discrete scheme for phase field crystal equation[J]. Applied Numerical Mathematics, 2022, 178, 337-355.
Authors:  Zhang, Fan;  Li, Dongfang;  Sun, Hai Wei;  Zhang, Jia Li
Favorite | TC[WOS]:11 TC[Scopus]:11  IF:2.2/2.3 | Submit date:2022/05/13
Compact Difference Scheme  Crank-nicolson/adams-bashforth Scheme  Energy Stability  Error Estimate  Phase Field Crystal Equation  
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations Journal article
Zhang,Qifeng, Zhang,Lu, Sun,Hai wei. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 389, 113355.
Authors:  Zhang,Qifeng;  Zhang,Lu;  Sun,Hai wei
Favorite | TC[WOS]:22 TC[Scopus]:22  IF:2.1/2.1 | Submit date:2021/03/09
Boundedness  Circulant Preconditioner  Crank–nicolson Scheme  Space Fractional Ginzburg–landau Equation  
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations Journal article
Zhang, Q. F., Zhang, L., Sun, H. W.. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 113355-113355.
Authors:  Zhang, Q. F.;  Zhang, L.;  Sun, H. W.
Favorite | TC[WOS]:22 TC[Scopus]:22  IF:2.1/2.1 | Submit date:2022/07/25
Space Fractional Ginzburg-landau Equation  Crank–nicolson Scheme  Boundedness  Circulant Preconditioner  
Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model Journal article
Shu-Ling Yang, Spike T. Lee, Hai-Wei Sun. Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model[J]. International Journal of Computer Mathematics, 2011, 88(8), 1730-1748.
Authors:  Shu-Ling Yang;  Spike T. Lee;  Hai-Wei Sun
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/13
Boundary Value Method  Crank-nicolson Time-marching Scheme  Fourth-order Compact Scheme  Jump-diffusion  Preconditioner  Toeplitz Matrix  
A fourth-order compact BVM scheme for the two-dimensional heat equations Conference paper
Sun H.-W., Wang W.. A fourth-order compact BVM scheme for the two-dimensional heat equations[C], 2008, 310-314.
Authors:  Sun H.-W.;  Wang W.
Favorite |  | Submit date:2019/02/13
BVMs  Compact difference scheme  Crank-Nicolson  Heat equation  Unconditional stability