UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
On the variation of the spectrum of a Hermitian matrix Journal article
Li, Wen, Vong, Seak-Weng. On the variation of the spectrum of a Hermitian matrix[J]. APPLIED MATHEMATICS LETTERS, 2017, 65, 70-76.
Authors:  Li, Wen;  Vong, Seak-Weng
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:2.9/2.6 | Submit date:2018/10/30
Hermitian Matrix  Eigenvalue  Perturbation  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Li W., Vong S.-W., Peng X.-F.. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:  Li W.;  Vong S.-W.;  Peng X.-F.
Favorite | TC[WOS]:2 TC[Scopus]:3 | Submit date:2018/12/24
Eigenvalue Perturbation  Hermitian Block Tridiagonal Matrices  Saddle Point Matrices  Weyl's Bound  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Li,Wen, Vong,Seak Weng, Peng,Xiao Fei. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:  Li,Wen;  Vong,Seak Weng;  Peng,Xiao Fei
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:2.2/2.3 | Submit date:2021/03/09
Eigenvalue Perturbation  Hermitian Block Tridiagonal Matrices  Saddle Point Matrices  Weyl's Bound