×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
SUN HAIWEI [5]
Document Type
Journal article [6]
Date Issued
2024 [1]
2023 [1]
2022 [4]
Language
英語English [6]
Source Publication
Journal of Scien... [3]
Mathematics and ... [2]
Applied Mathemat... [1]
Indexed By
SCIE [5]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation
Journal article
Zhang, Fan, Sun, Hai Wei, Sun, Tao. Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation[J]. Applied Mathematics and Computation, 2024, 470, 128592.
Authors:
Zhang, Fan
;
Sun, Hai Wei
;
Sun, Tao
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
3.5
/
3.1
|
Submit date:2024/05/16
Error Estimates
Exponential Scalar Auxiliary Variable Method
Phase Field Crystal Equation
Unconditional Energy Stability
Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation
Journal article
Li, Dongfang, Li, Xiaoxi, Sun, Hai wei. Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation[J]. Journal of Scientific Computing, 2023, 97(3), 71.
Authors:
Li, Dongfang
;
Li, Xiaoxi
;
Sun, Hai wei
Favorite
|
TC[WOS]:
9
TC[Scopus]:
8
IF:
2.8
/
2.7
|
Submit date:2024/01/02
Coupled Nonlinear Schrödinger Equation
Error Estimates
Mass- And Energy-conservation
Sav Crank–nicolson Finite Element Method
Scalar Auxiliary Variable Approach
A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates
Journal article
Li, Dongfang, She, Mianfu, Sun, Hai wei, Yan, Xiaoqiang. A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates[J]. Journal of Scientific Computing, 2022, 91(1).
Authors:
Li, Dongfang
;
She, Mianfu
;
Sun, Hai wei
;
Yan, Xiaoqiang
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
IF:
2.8
/
2.7
|
Submit date:2022/05/04
High-order Time-stepping Methods
Modified Grönwall Inequality
Nonlinear Time-fractional Equations
Pointwise-in-time Error Estimates
A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates
Journal article
Li, D. F., She, M.F., Sun, H. W., Yan, X.Q.. A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates[J]. Journal of Scientific Computing, 2022, 91(1), 1-27.
Authors:
Li, D. F.
;
She, M.F.
;
Sun, H. W.
;
Yan, X.Q.
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
|
Submit date:2022/07/25
Nonlinear Time-fractional Equations
High-order Time-stepping Methods
Modified Grönwall Inequality
Pointwise-in-time Error Estimates
A transformed L1 method for solving the multi-term time-fractional diffusion problem
Journal article
She, Mianfu, Li, Dongfang, Sun, Hai wei. A transformed L1 method for solving the multi-term time-fractional diffusion problem[J]. Mathematics and Computers in Simulation, 2022, 193, 584-606.
Authors:
She, Mianfu
;
Li, Dongfang
;
Sun, Hai wei
Favorite
|
TC[WOS]:
21
TC[Scopus]:
21
IF:
4.4
/
3.6
|
Submit date:2022/03/28
Chebyshev–galerkin Spectral Method
Error Estimates
Modified L1 Scheme
Multi-term Time-fractional Equation
A novel $L1$ method for solving the multi-term time-fractional diffusion problem
Journal article
She, M. F., Li, D. F., Sun, H. W.. A novel $L1$ method for solving the multi-term time-fractional diffusion problem[J]. Mathematics and Computers in Simulation, 2022, 584-606.
Authors:
She, M. F.
;
Li, D. F.
;
Sun, H. W.
Favorite
|
TC[WOS]:
21
TC[Scopus]:
21
IF:
4.4
/
3.6
|
Submit date:2022/07/25
Multi-term Time-fractional Equation
Modified L1 Scheme
Chebyshev–galerkin Spectral Method
Error Estimates