UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation Journal article
Zhang, Fan, Sun, Hai Wei, Sun, Tao. Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation[J]. Applied Mathematics and Computation, 2024, 470, 128592.
Authors:  Zhang, Fan;  Sun, Hai Wei;  Sun, Tao
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:3.5/3.1 | Submit date:2024/05/16
Error Estimates  Exponential Scalar Auxiliary Variable Method  Phase Field Crystal Equation  Unconditional Energy Stability  
Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation Journal article
Li, Dongfang, Li, Xiaoxi, Sun, Hai wei. Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation[J]. Journal of Scientific Computing, 2023, 97(3), 71.
Authors:  Li, Dongfang;  Li, Xiaoxi;  Sun, Hai wei
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:2.8/2.7 | Submit date:2024/01/02
Coupled Nonlinear Schrödinger Equation  Error Estimates  Mass- And Energy-conservation  Sav Crank–nicolson Finite Element Method  Scalar Auxiliary Variable Approach  
A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates Journal article
Li, Dongfang, She, Mianfu, Sun, Hai wei, Yan, Xiaoqiang. A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates[J]. Journal of Scientific Computing, 2022, 91(1).
Authors:  Li, Dongfang;  She, Mianfu;  Sun, Hai wei;  Yan, Xiaoqiang
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:2.8/2.7 | Submit date:2022/05/04
High-order Time-stepping Methods  Modified Grönwall Inequality  Nonlinear Time-fractional Equations  Pointwise-in-time Error Estimates  
A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates Journal article
Li, D. F., She, M.F., Sun, H. W., Yan, X.Q.. A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates[J]. Journal of Scientific Computing, 2022, 91(1), 1-27.
Authors:  Li, D. F.;  She, M.F.;  Sun, H. W.;  Yan, X.Q.
Favorite | TC[WOS]:8 TC[Scopus]:8 | Submit date:2022/07/25
Nonlinear Time-fractional Equations  High-order Time-stepping Methods  Modified Grönwall Inequality  Pointwise-in-time Error Estimates  
A transformed L1 method for solving the multi-term time-fractional diffusion problem Journal article
She, Mianfu, Li, Dongfang, Sun, Hai wei. A transformed L1 method for solving the multi-term time-fractional diffusion problem[J]. Mathematics and Computers in Simulation, 2022, 193, 584-606.
Authors:  She, Mianfu;  Li, Dongfang;  Sun, Hai wei
Favorite | TC[WOS]:21 TC[Scopus]:21  IF:4.4/3.6 | Submit date:2022/03/28
Chebyshev–galerkin Spectral Method  Error Estimates  Modified L1 Scheme  Multi-term Time-fractional Equation  
A novel $L1$ method for solving the multi-term time-fractional diffusion problem Journal article
She, M. F., Li, D. F., Sun, H. W.. A novel $L1$ method for solving the multi-term time-fractional diffusion problem[J]. Mathematics and Computers in Simulation, 2022, 584-606.
Authors:  She, M. F.;  Li, D. F.;  Sun, H. W.
Favorite | TC[WOS]:21 TC[Scopus]:21  IF:4.4/3.6 | Submit date:2022/07/25
Multi-term Time-fractional Equation  Modified L1 Scheme  Chebyshev–galerkin Spectral Method  Error Estimates