UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Investigation on optimization-oriented EPC method in analyzing the non-linear oscillations under multiple excitations Journal article
Bai, Guo Peng, Ren, Ze Xin, Er, Guo Kang, Iu, Vai Pan. Investigation on optimization-oriented EPC method in analyzing the non-linear oscillations under multiple excitations[J]. International Journal of Non-Linear Mechanics, 2024, 164, 104771.
Authors:  Bai, Guo Peng;  Ren, Ze Xin;  Er, Guo Kang;  Iu, Vai Pan
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.8/2.6 | Submit date:2024/07/04
Exponential-polynomial Closure  Fpk Equation  Multiple Excitations  Optimization  Probabilistic Density Function  
Probabilistic analysis of nonlinear oscillators under correlated multi-power velocity multiplicative excitation and additive excitation Journal article
Bai, Guo Peng, Er, Guo Kang, Iu, Vai Pan. Probabilistic analysis of nonlinear oscillators under correlated multi-power velocity multiplicative excitation and additive excitation[J]. Nonlinear Dynamics, 2024.
Authors:  Bai, Guo Peng;  Er, Guo Kang;  Iu, Vai Pan
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:5.2/4.8 | Submit date:2024/07/04
Exponential-polynomial Closure  Fpk Equation  Nonlinear Stochastic Oscillator  Optimization  Probabilistic Density Function  
Optimization-Oriented EPC Approach for Analyzing the Stochastic Nonlinear Oscillators with Displacement-Multiplicative and Additive Excitations Journal article
Bai, Guo Peng, Er, Guo Kang, Pan Iu, Vai, Lam, Chi Chiu. Optimization-Oriented EPC Approach for Analyzing the Stochastic Nonlinear Oscillators with Displacement-Multiplicative and Additive Excitations[J]. International Journal of Applied Mechanics, 2024, 16(1).
Authors:  Bai, Guo Peng;  Er, Guo Kang;  Pan Iu, Vai;  Lam, Chi Chiu
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.9/2.8 | Submit date:2024/02/22
Fpk Equation  Multiplicative Excitation  Nonlinear Stochastic Oscillator  Optimization-oriented Exponential–polynomial-closure  Random Vibration  
Optimization-oriented exponential-polynomial-closure approach for analyzing nonlinear stochastic oscillators Journal article
Bai, Guo-Peng, Er, Guo-Kang, Iu, Vai Pan, Lam, Chi Chiu. Optimization-oriented exponential-polynomial-closure approach for analyzing nonlinear stochastic oscillators[J]. Probabilistic Engineering Mechanics, 2023, 73, 103477.
Authors:  Bai, Guo-Peng;  Er, Guo-Kang;  Iu, Vai Pan;  Lam, Chi Chiu
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:3.0/3.0 | Submit date:2023/06/29
Nonlinear Stochastic Oscillator  Probabilistic Density Function  Fpk Equation  Exponential-polynomial Closure  Optimization  
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise Journal article
Er G.K., Iu V.P., Wang K., Guo S.S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 85(3), 1887-1899.
Authors:  Er G.K.;  Iu V.P.;  Wang K.;  Guo S.S.
Favorite | TC[WOS]:17 TC[Scopus]:18 | Submit date:2019/02/12
Cable  Exponential Polynomial Closure Method  Fokker–planck–kolmogorov Equation  Multi-degree-of-freedom  Nonlinear Random Vibration  State-space-split Method  
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise Journal article
Er, G. K., Iu, V. P., Wang, K., Guo, S. S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 1887-1899.
Authors:  Er, G. K.;  Iu, V. P.;  Wang, K.;  Guo, S. S.
Favorite | TC[WOS]:17 TC[Scopus]:18 | Submit date:2022/08/28
Cable  Multi-degree-of-freedom  Nonlinear Random Vibration  Fokker-planck-kolmogorov Equation  State-space-split Method  Exponential Polynomial Closure Method.  
Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises Journal article
Guo, S, Er, G. K., Lam, C. C.. Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises[J]. Nonlinear Dynamics, 2014, 597-604.
Authors:  Guo, S;  Er, G. K.;  Lam, C. C.
Favorite | TC[WOS]:17 TC[Scopus]:19  IF:5.2/4.8 | Submit date:2022/08/06
Correlated Excitations  Exponential Polynomial Closure Method  Nonzero Mean  Fokker-planck-kolmogorov Equation  
Probabilistic solutions of some multi-degree-of-freedom nonlinear stochastic dynamical systems excited by filtered Gaussian white noise Journal article
Er G.-K.. Probabilistic solutions of some multi-degree-of-freedom nonlinear stochastic dynamical systems excited by filtered Gaussian white noise[J]. Computer Physics Communications, 2014, 185(4), 1217-1222.
Authors:  Er G.-K.
Favorite | TC[WOS]:27 TC[Scopus]:27 | Submit date:2019/02/13
Exponential Polynomial Closure  Fokker-planck-kolmogorov Equation  High Dimensions  Nonlinear Stochastic Dynamical System  State-space-split  
Probabilistic solutions of some multi-degree-of-freedom nonlinear stochastic dynamical systems excited by filtered Gaussian white noise Journal article
Er,Guo Kang. Probabilistic solutions of some multi-degree-of-freedom nonlinear stochastic dynamical systems excited by filtered Gaussian white noise[J]. Computer Physics Communications, 2014, 185(4), 1217-1222.
Authors:  Er,Guo Kang
Favorite | TC[WOS]:27 TC[Scopus]:27  IF:7.2/6.6 | Submit date:2021/03/09
Exponential Polynomial Closure  Fokker-planck-kolmogorov Equation  High Dimensions  Nonlinear Stochastic Dynamical System  State-space-split  
Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises Journal article
Guo S.-S., Er G.-K., Lam C.C.. Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises[J]. Nonlinear Dynamics, 2014, 77(3), 597-604.
Authors:  Guo S.-S.;  Er G.-K.;  Lam C.C.
Favorite | TC[WOS]:17 TC[Scopus]:19 | Submit date:2019/02/13
Correlated Excitations  Exponential Polynomial Closure Method  Fokker-planck-kolmogorov Equation  Nonzero Mean