×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
SUN HAIWEI [5]
Document Type
Journal article [6]
Date Issued
2024 [1]
2022 [1]
2021 [2]
2014 [2]
Language
英語English [6]
Source Publication
Numerical Algori... [2]
Applied Mathemat... [1]
Computers and Ma... [1]
East Asian Journ... [1]
Journal of Scien... [1]
Indexed By
SCIE [5]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
A fast Strang splitting method with mass conservation for the space-fractional Gross-Pitaevskii equation
Journal article
Cai, Yao Yuan, Sun, Hai Wei. A fast Strang splitting method with mass conservation for the space-fractional Gross-Pitaevskii equation[J]. Applied Mathematics and Computation, 2024, 470, 128575.
Authors:
Cai, Yao Yuan
;
Sun, Hai Wei
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
3.5
/
3.1
|
Submit date:2024/05/16
Circulant And skew-Circulant Matrix Exponential
Fast Fourier Transform
Fractional Gross–pitaevskii Equation
Mass Conservation
Two-level Strang Splitting Method
Second-order maximum principle preserving Strang's splitting schemes for anisotropic fractional Allen-Cahn equations
Journal article
Chen, H., Sun, H. W.. Second-order maximum principle preserving Strang's splitting schemes for anisotropic fractional Allen-Cahn equations[J]. Numerical Algorithms, 2022.
Authors:
Chen, H.
;
Sun, H. W.
Favorite
|
TC[WOS]:
10
TC[Scopus]:
7
|
Submit date:2022/07/25
Fractional Allen-cahn Equation
Discrete Maximum Principle
Operator Splitting Method
Matrix Exponential
Toeplitz Matrix
Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations
Journal article
Chen, Hao, Sun, Hai Wei. Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations[J]. Numerical Algorithms, 2021, 90(2), 749-771.
Authors:
Chen, Hao
;
Sun, Hai Wei
Favorite
|
TC[WOS]:
10
TC[Scopus]:
7
IF:
1.7
/
1.9
|
Submit date:2022/05/13
Discrete Maximum Principle
Fractional Allen-cahn Equation
Matrix Exponential
Operator Splitting Method
Toeplitz Matrix
A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations
Journal article
Chen, Hao, Sun, Hai Wei. A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations[J]. Journal of Scientific Computing, 2021, 87(1), 30.
Authors:
Chen, Hao
;
Sun, Hai Wei
Favorite
|
TC[WOS]:
14
TC[Scopus]:
13
IF:
2.8
/
2.7
|
Submit date:2021/12/07
Dimensional Splitting
Discrete Maximum Principle
Exponential Time Differencing
Fractional Allen-cahn Equation
Matrix Exponential
Toeplitz Matrix
65f10
65l05
65n22
65f15
Exponential splitting for n-dimensional paraxial Helmholtz equation with high wavenumbers
Journal article
Sheng,Qin, Sun,Hai Wei. Exponential splitting for n-dimensional paraxial Helmholtz equation with high wavenumbers[J]. Computers and Mathematics with Applications, 2014, 68(10), 1341-1354.
Authors:
Sheng,Qin
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
4
TC[Scopus]:
5
|
Submit date:2019/05/27
Asymptotic Stability
Eikonal Transformation
Exponential Splitting
High Oscillations
High Wavenumber
Paraxial Helmholtz Equation
Fast exponential time integration for pricing options in stochastic volatility jump diffusion models
Journal article
Pang,Hong Kui, Sun,Hai Wei. Fast exponential time integration for pricing options in stochastic volatility jump diffusion models[J]. East Asian Journal on Applied Mathematics, 2014, 4(1), 52-68.
Authors:
Pang,Hong Kui
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
13
TC[Scopus]:
13
|
Submit date:2019/05/27
Barrier Option
European Option
Matrix Exponential
Matrix Splitting
Multigrid Method
Partial Integrodifferential Equation
Shift-invert Arnoldi
Stochastic Volatility Jump Diffusion