UM

Browse/Search Results:  1-10 of 73 Help

Selected(0)Clear Items/Page:    Sort:
Breaking the Memory Wall for Heterogeneous Federated Learning via Model Splitting Journal article
Tian, Chunlin, Li, Li, Tam, Kahou, Wu, Yebo, Xu, Cheng Zhong. Breaking the Memory Wall for Heterogeneous Federated Learning via Model Splitting[J]. IEEE Transactions on Parallel and Distributed Systems, 2024, 35(12), 2513-2526.
Authors:  Tian, Chunlin;  Li, Li;  Tam, Kahou;  Wu, Yebo;  Xu, Cheng Zhong
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:5.6/4.5 | Submit date:2024/12/05
Cross-device Federated Learning (Fl)  Memory-wall  Heterogeneity-aware  
A Hierarchical Incentive Mechanism for Federated Learning Journal article
Huang, Jiwei, Ma, Bowen, Wu, Yuan, Chen, Ying, Shen, Xuemin. A Hierarchical Incentive Mechanism for Federated Learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(12), 12731-12747.
Authors:  Huang, Jiwei;  Ma, Bowen;  Wu, Yuan;  Chen, Ying;  Shen, Xuemin
Favorite | TC[WOS]:0 TC[Scopus]:5  IF:7.7/6.5 | Submit date:2024/08/05
Incentive Mechanism  Federated Learning  Contract Theory  Stackelberg Game  
Mobile Blockchain-Enabled Secure and Efficient Information Management for Indoor Positioning With Federated Learning Journal article
Zuo, Yiping, Gui, Linqing, Cui, Kaiyan, Guo, Jiajia, Xiao, Fu, Jin, Shi. Mobile Blockchain-Enabled Secure and Efficient Information Management for Indoor Positioning With Federated Learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(12), 12176-12194.
Authors:  Zuo, Yiping;  Gui, Linqing;  Cui, Kaiyan;  Guo, Jiajia;  Xiao, Fu; et al.
Favorite | TC[WOS]:1 TC[Scopus]:2  IF:7.7/6.5 | Submit date:2024/12/05
Blockchain  Edge Computing  Federated Learning  Indoor Positioning  Information Management  
PriFairFed: A Local Differentially Private Federated Learning Algorithm for Client-Level Fairness Journal article
Hu, Chuang, Wu, Nanxi, Shi, Siping, Liu, Xuan, Luo, Bing, Wang, Ye, Jiang, Jiawei, Cheng, Dazhao, Wenhan, Wu W.. PriFairFed: A Local Differentially Private Federated Learning Algorithm for Client-Level Fairness[J]. IEEE Transactions on Mobile Computing, 2024, 1-12.
Authors:  Hu, Chuang;  Wu, Nanxi;  Shi, Siping;  Liu, Xuan;  Luo, Bing; et al.
Favorite | TC[Scopus]:0  IF:7.7/6.5 | Submit date:2024/12/26
Federated Learning  Local Differential Privacy  Performance Fairness  Tikhonov Regularization  
Road Supervised Federated Learning with Bug-Aware Sensor Placement Journal article
Chen, Jianjun, Wang, Shuai, Liu, Chenguang, Ng, Derrick Wing Kwan, Xu, Chengzhong, Hao, Qi, Lu, Haiyan. Road Supervised Federated Learning with Bug-Aware Sensor Placement[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12), 19762 - 19767.
Authors:  Chen, Jianjun;  Wang, Shuai;  Liu, Chenguang;  Ng, Derrick Wing Kwan;  Xu, Chengzhong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:6.1/6.5 | Submit date:2024/09/03
Autonomous Vehicle  Federated Learning  
Privacy-preserving intelligent fault diagnostics for wind turbine clusters using federated stacked capsule autoencoder Journal article
Chen, Hao, Wang, Xian Bo, Yang, Zhi Xin, Li, Jia ming. Privacy-preserving intelligent fault diagnostics for wind turbine clusters using federated stacked capsule autoencoder[J]. Expert Systems with Applications, 2024, 254, 124256.
Authors:  Chen, Hao;  Wang, Xian Bo;  Yang, Zhi Xin;  Li, Jia ming
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:7.5/7.6 | Submit date:2024/07/04
Federated Learning  Intelligent Fault Diagnosis  Stacked Capsule Autoencoder  Wind Turbine  
FedHybrid: Breaking the Memory Wall of Federated Learning via Hybrid Tensor Management Conference paper
Tam, Kahou, Tian, Chunlin, Li, Li, Zhao, Haikai, Xu, Cheng Zhong. FedHybrid: Breaking the Memory Wall of Federated Learning via Hybrid Tensor Management[C], New York, NY, USA:Association for Computing Machinery, 2024, 394-408.
Authors:  Tam, Kahou;  Tian, Chunlin;  Li, Li;  Zhao, Haikai;  Xu, Cheng Zhong
Favorite | TC[Scopus]:0 | Submit date:2024/12/26
Federated Learning  Memory Optimization  Mobile Computing  
Towards Effective Federated Graph Anomaly Detection via Self-boosted Knowledge Distillation Conference paper
Cai, Jinyu, Zhang, Yunhe, Lu, Zhoumin, Guo, Wenzhong, Ng, See Kiong. Towards Effective Federated Graph Anomaly Detection via Self-boosted Knowledge Distillation[C]:Association for Computing Machinery, Inc, 2024, 5537-5546.
Authors:  Cai, Jinyu;  Zhang, Yunhe;  Lu, Zhoumin;  Guo, Wenzhong;  Ng, See Kiong
Favorite | TC[Scopus]:1 | Submit date:2024/12/05
Anomaly Detection  Federated Learning  Graph Neural Networks  Unsupervised Learning  
Snowball Effect in Federated Learning: An Approach of Exponentially Expanding Structures for Optimizing the Training Efficiency Journal article
Cheng, Guoliang, Li, Peichun, Tan, Beihai, Yu, Rong, Wu, Yuan, Pan, Miao. Snowball Effect in Federated Learning: An Approach of Exponentially Expanding Structures for Optimizing the Training Efficiency[J]. IEEE Transactions on Cognitive Communications and Networking, 2024.
Authors:  Cheng, Guoliang;  Li, Peichun;  Tan, Beihai;  Yu, Rong;  Wu, Yuan; et al.
Favorite | TC[Scopus]:0  IF:7.4/6.9 | Submit date:2024/11/05
Federated Learning  Distributed Computing  Resource Management  Optimization Methods  
Joint Optimization of Model Partition and Resource Allocation for Split Federated Learning over Vehicular Edge Networks Journal article
Wu Maoqiang, Yang Ruibin, Huang Xumin, Wu Yuan, Kang Jiawen, Xie Shengli. Joint Optimization of Model Partition and Resource Allocation for Split Federated Learning over Vehicular Edge Networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10), 15860-15865.
Authors:  Wu Maoqiang;  Yang Ruibin;  Huang Xumin;  Wu Yuan;  Kang Jiawen; et al.
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:6.1/6.5 | Submit date:2024/06/05
Split Federated Learning  Model Partition  Resource Allocation  Vehicular Edge Networks