UM

Browse/Search Results:  1-10 of 44 Help

Selected(0)Clear Items/Page:    Sort:
Probabilistic Solutions of a Nonlinear Plate Excited by Gaussian White Noise Fully Correlated in Space Journal article
Er, G. K., Iu, V. P.. Probabilistic Solutions of a Nonlinear Plate Excited by Gaussian White Noise Fully Correlated in Space[J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2017, 17(9).
Authors:  Er, G. K.;  Iu, V. P.
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:3.0/2.9 | Submit date:2018/10/30
Nonlinear Plate  Fokker-planck-kolmogorov Equation  Probabilistic Solution  Mdof System  
Probabilistic solutions of simply-supported nonlinear plate excited by Gaussian white noise fully correlated in space Journal article
Er, G. K., Iu, V. P.. Probabilistic solutions of simply-supported nonlinear plate excited by Gaussian white noise fully correlated in space[J]. International Journal of Structural Stability and Dynamics, 2017, 17(9), 1750097-1-18.
Authors:  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/07/14
Nonlinear Plate  Fokker-planck-kolmogorov Equation  Probabilistic Solution  Mdof System  
Probabilistic solutions of simply-supported nonlinear plate excited by Gaussian white noise fully correlated in space Journal article
Er, G. K., Iu, V. P.. Probabilistic solutions of simply-supported nonlinear plate excited by Gaussian white noise fully correlated in space[J]. International Journal of Structural Stability and Dynamics, 2017, 17(9), 1750097-1-1750097-18.
Authors:  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/07/14
Nonlinear Plate  Fokker-planck-kolmogorov Equation  Probabilistic Solution  Mdof System  
Nonlinear Random Vibrations of Stretched Beam Discretized by Finite Difference Scheme and Excited by Gaussian White Noise Conference paper
Er, G. K., Iu, V. P., Wang, K., Du, H. E.. Nonlinear Random Vibrations of Stretched Beam Discretized by Finite Difference Scheme and Excited by Gaussian White Noise[C], 2017.
Authors:  Er, G. K.;  Iu, V. P.;  Wang, K.;  Du, H. E.
Favorite |  | Submit date:2022/08/26
Nonlinear beam  Fokker-Planck-Kolmogorov equation  probabilistic solution  MDOF system  
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise Journal article
Er G.K., Iu V.P., Wang K., Guo S.S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 85(3), 1887-1899.
Authors:  Er G.K.;  Iu V.P.;  Wang K.;  Guo S.S.
Favorite | TC[WOS]:17 TC[Scopus]:18 | Submit date:2019/02/12
Cable  Exponential Polynomial Closure Method  Fokker–planck–kolmogorov Equation  Multi-degree-of-freedom  Nonlinear Random Vibration  State-space-split Method  
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise Journal article
Er, G. K., Iu, V. P., Wang, K., Guo, S. S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 1887-1899.
Authors:  Er, G. K.;  Iu, V. P.;  Wang, K.;  Guo, S. S.
Favorite | TC[WOS]:17 TC[Scopus]:18 | Submit date:2022/08/28
Cable  Multi-degree-of-freedom  Nonlinear Random Vibration  Fokker-planck-kolmogorov Equation  State-space-split Method  Exponential Polynomial Closure Method.  
The Probabilistic solution of the plate with simple-supported and stretched boundary and uniform Load being Gaussian white noise Book chapter
出自: Dynamical Analysis of Multibody Systems with Design Uncertainties:Elsevier, 2015, 页码:24-33
Authors:  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/08/28
Probabilistic solution  von Karman plate  Fokker-Planck-Kolmogorov equation  State-space-split method  
Nonlinear random vibration of the cable modeled as MDOF system and excited by filtered Gaussian white noise Conference paper
Er, G. K., Iu, V. P., Wang, K.. Nonlinear random vibration of the cable modeled as MDOF system and excited by filtered Gaussian white noise[C], Barcelona:International Center for Numerical Methods in Engineering (CIMNE), ISBN: 978-84-944244-0-3., 2015.
Authors:  Er, G. K.;  Iu, V. P.;  Wang, K.
Favorite |  | Submit date:2022/08/28
Cable  Nonlinear  Random vibration  Fokker-Planck-Kolmogorov equation  High di-mensionality  State-space-split method  
Nonlinear random vibration of the cable modeled as MDOF system and excited by filtered Gaussian white noise Conference paper
Er G.K., Iu V.P., Wang K.. Nonlinear random vibration of the cable modeled as MDOF system and excited by filtered Gaussian white noise[C], 2015, 100-108.
Authors:  Er G.K.;  Iu V.P.;  Wang K.
Favorite |  | Submit date:2019/02/12
Cable  Fokker-Planck-Kolmogorov equation  High dimensionality  Nonlinear  Random vibration  State-space-split method  
A high order compact finite difference scheme for time fractional Fokker-Planck equations Journal article
Vong S., Wang Z.. A high order compact finite difference scheme for time fractional Fokker-Planck equations[J]. Applied Mathematics Letters, 2015, 43, 38-43.
Authors:  Vong S.;  Wang Z.
Favorite | TC[WOS]:41 TC[Scopus]:42 | Submit date:2018/12/24
Convergence  Energy Method  Fokker-planck Equation  Fractional  High Order Compact Difference Scheme  Stability