UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Frequency Domain Identification of Continuous-Time Hammerstein Systems With Adaptive Continuous-Time Rational Orthonormal Basis Functions Journal article
Mi,Wen, Zhang,Liming, Zheng,Wei Xing, Zhang,Sheng. Frequency Domain Identification of Continuous-Time Hammerstein Systems With Adaptive Continuous-Time Rational Orthonormal Basis Functions[J]. IEEE Transactions on Automatic Control, 2023, 68(12), 1-8.
Authors:  Mi,Wen;  Zhang,Liming;  Zheng,Wei Xing;  Zhang,Sheng
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:6.2/6.6 | Submit date:2023/08/03
Adaptive Systems  Approximation Algorithms  Convergence  Fourier Series  Frequency Domain  Frequency Estimation  Frequency-domain Analysis  Hammerstein Systems  Linear Systems  Nonlinear System Identification  Orthogonal Basis  Rational Functions  
Adaptive Fourier decomposition-based Dirac type time-frequency distribution Journal article
Zhang, Liming, Qian, Tao, Mai, Weixiong, Dang, Pei. Adaptive Fourier decomposition-based Dirac type time-frequency distribution[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40(8), 2815-2833.
Authors:  Zhang, Liming;  Qian, Tao;  Mai, Weixiong;  Dang, Pei
Favorite | TC[WOS]:5 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2018/10/30
Instantaneous Frequency  Mono-component  Multi-component  Adaptive Fourier Decomposition  Time-frequency Distribution  The Best N-rational Approximation  
Greedy adaptive decomposition of signals based on nonlinear Fourier atoms Journal article
Kou,Kit Ian, Li,Hong. Greedy adaptive decomposition of signals based on nonlinear Fourier atoms[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2016, 14(3).
Authors:  Kou,Kit Ian;  Li,Hong
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.9/1.1 | Submit date:2021/03/11
Analytic Signal  Approximation  Greedy Algorithm  Nonlinear Fourier Atom  
Greedy adaptive decomposition of signals based on nonlinear Fourier atoms Journal article
Kou K.I., Li H.. Greedy adaptive decomposition of signals based on nonlinear Fourier atoms[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2016, 14(3).
Authors:  Kou K.I.;  Li H.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/02/13
Analytic Signal  Approximation  Greedy Algorithm  Nonlinear Fourier Atom  
Adaptive Fourier decompositions and rational approximations, part I: Theory Journal article
Qian T.. Adaptive Fourier decompositions and rational approximations, part I: Theory[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(5).
Authors:  Qian T.
Favorite | TC[WOS]:18 TC[Scopus]:21 | Submit date:2019/02/11
Adaptive Fourier Decomposition  Blaschke Form  Digital Signal Processing  Hardy Space  Mono-component  Möbius Transform  Rational Approximation  Rational Orthogonal System  Time-frequency Distribution  Uncertainty Principle  
Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis Journal article
Qian T., Zhang L.-M.. Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis[J]. Applied Mathematics, 2013, 28(4), 505-530.
Authors:  Qian T.;  Zhang L.-M.
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:1.2/0.8 | Submit date:2019/02/11
Adaptive Fourier Decomposition  Blaschke Form  Digital Signal Processing  Hardy Space  Higher Dimensional Signal Analysis In Several Complex Variables And The Clifford Algebra settIng  Möbius Transform  Mono-component  Rational Approximation  Rational Orthogonal System  Time-frequency Distribution  Uncertainty Principle  
Adaptive Fourier decomposition of functions in quaternionic Hardy spaces Journal article
Qian T., Sprossig W., Wang J.. Adaptive Fourier decomposition of functions in quaternionic Hardy spaces[J]. Mathematical Methods in the Applied Sciences, 2012, 35(1), 43-64.
Authors:  Qian T.;  Sprossig W.;  Wang J.
Favorite | TC[WOS]:26 TC[Scopus]:31  IF:2.1/2.0 | Submit date:2019/02/11
Adaptive Decomposition  Blaschke Product  Fourier-laplace Series  Greedy Algorithm  Hardy Space  Optimal Approximation By Rational Functions  Quaternionic Holomorphic  Spherical Harmonics  Takenaka-malmquist System  
On the solution to singular integral equations with logarithmic kernel based on wavelet Journal article
Cui L., Liao F., Tang Y.. On the solution to singular integral equations with logarithmic kernel based on wavelet[J]. Journal of Information and Computational Science, 2006, 3(1), 1-14.
Authors:  Cui L.;  Liao F.;  Tang Y.
Favorite |  | Submit date:2019/02/11
Fourier approximation  Galerkin  Periodic wavelet  Tikhonov regularization  Weak singular integral equation