×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
Authors
SUN HAIWEI [4]
VONG SEAK WENG [1]
Document Type
Journal article [6]
Date Issued
2023 [1]
2014 [1]
2012 [2]
2011 [1]
2009 [1]
Language
英語English [6]
Source Publication
Advances in Appl... [2]
International Jo... [2]
Numerical Method... [2]
Indexed By
SCIE [6]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Fast compact finite difference schemes on graded meshes for fourth-order multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions
Journal article
Wang, Zhibo, Ou, Caixia, Cen, Dakang. Fast compact finite difference schemes on graded meshes for fourth-order multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions[J]. International Journal of Computer Mathematics, 2023, 100(2), 361-382.
Authors:
Wang, Zhibo
;
Ou, Caixia
;
Cen, Dakang
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
IF:
1.7
/
1.5
|
Submit date:2023/01/30
Fast Compact Difference Scheme
First Dirichlet Boundary Conditions
Fourth-order Multi-term Fractional Sub-diffusion Equation
Non-smooth Solution
Stability And Convergence
Compact finite difference scheme for the fourth-order fractional subdiffusion system
Journal article
Vong S., Wang Z.. Compact finite difference scheme for the fourth-order fractional subdiffusion system[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(4), 419-435.
Authors:
Vong S.
;
Wang Z.
Favorite
|
TC[WOS]:
37
TC[Scopus]:
37
|
Submit date:2018/12/24
Compact Difference Scheme
Convergence
Energy Method
Fourth-order Fractional Subdiffusion Equation
Stability
Fourth-order compact scheme with local mesh refinement for option pricing in jump-diffusion model
Journal article
Lee S.T., Sun H.-W.. Fourth-order compact scheme with local mesh refinement for option pricing in jump-diffusion model[J]. Numerical Methods for Partial Differential Equations, 2012, 28(3), 1079-1098.
Authors:
Lee S.T.
;
Sun H.-W.
Favorite
|
TC[WOS]:
20
TC[Scopus]:
25
|
Submit date:2019/02/13
Fourth-order Compact Scheme
Jump-diffusion
Local Mesh Refinement
Partial Integro-differential Equation
Toeplitz Matrix
Fourth-Order Compact Scheme with Local Mesh Refinement for Option Pricing in Jump-Diffusion Model
Journal article
Spike T. Lee, Hai‐Wei Sun. Fourth-Order Compact Scheme with Local Mesh Refinement for Option Pricing in Jump-Diffusion Model[J]. Numerical Methods for Partial Differential Equations, 2012, 28(3), 1079-1098.
Authors:
Spike T. Lee
;
Hai‐Wei Sun
Favorite
|
TC[WOS]:
20
TC[Scopus]:
25
IF:
2.1
/
2.8
|
Submit date:2019/07/30
Fourth-order Compact Scheme
Jump-diffusion
Local Mesh Refinement
Partial Integro-differentialequation
Toeplitz Matrix
Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model
Journal article
Shu-Ling Yang, Spike T. Lee, Hai-Wei Sun. Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model[J]. International Journal of Computer Mathematics, 2011, 88(8), 1730-1748.
Authors:
Shu-Ling Yang
;
Spike T. Lee
;
Hai-Wei Sun
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
|
Submit date:2019/02/13
Boundary Value Method
Crank-nicolson Time-marching Scheme
Fourth-order Compact Scheme
Jump-diffusion
Preconditioner
Toeplitz Matrix
Fourth order compact boundary value method for option pricing with jumps
Journal article
Lee,Spike T., Sun,Hai Wei. Fourth order compact boundary value method for option pricing with jumps[J]. Advances in Applied Mathematics and Mechanics, 2009, 1(6), 845-861.
Authors:
Lee,Spike T.
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
9
TC[Scopus]:
11
|
Submit date:2019/05/27
Boundary Value Method
Fourth Order Compact Scheme
Partial Integro-differential Equation
Preconditioning
Toeplitz Matrix