UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Fast compact finite difference schemes on graded meshes for fourth-order multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions Journal article
Wang, Zhibo, Ou, Caixia, Cen, Dakang. Fast compact finite difference schemes on graded meshes for fourth-order multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions[J]. International Journal of Computer Mathematics, 2023, 100(2), 361-382.
Authors:  Wang, Zhibo;  Ou, Caixia;  Cen, Dakang
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.7/1.5 | Submit date:2023/01/30
Fast Compact Difference Scheme  First Dirichlet Boundary Conditions  Fourth-order Multi-term Fractional Sub-diffusion Equation  Non-smooth Solution  Stability And Convergence  
Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations Journal article
Zhang, Jia Li, Fang, Zhi Wei, Sun, Hai Wei. Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations[J]. Numerical Mathematics, 2022, 15(1), 200-226.
Authors:  Zhang, Jia Li;  Fang, Zhi Wei;  Sun, Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:1.9/1.3 | Submit date:2022/05/17
Convergence  Exponential-sum-approximation Method  Fast Algorithm  Stability  Time-fractional Sub-diffusion Equation  Variable-order Caputo Fractional Derivative  
A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions Journal article
Vong S., Lyu P., Wang Z.. A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions[J]. Journal of Scientific Computing, 2016, 66(2), 725-739.
Authors:  Vong S.;  Lyu P.;  Wang Z.
Favorite | TC[WOS]:45 TC[Scopus]:46 | Submit date:2018/12/24
Compact Difference Scheme  Energy Method  Fractional Sub-diffusion Equation  Neumann Boundary Conditions  Variable Coefficient  
Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation Journal article
Wang Z., Vong S.. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation[J]. Journal of Computational Physics, 2014, 277, 1.
Authors:  Wang Z.;  Vong S.
Favorite | TC[WOS]:283 TC[Scopus]:301 | Submit date:2018/10/30
Compact Difference Scheme  Fractional Diffusion-wave Equation  Modified Anomalous Fractional Sub-diffusion Equation  Weighted And Shifted Grünwald Difference Operator