UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Inexact generalized noda iterations for generalized eigenproblems Journal article
Ge, X., Chen, X. S., Vong, S. W.. Inexact generalized noda iterations for generalized eigenproblems[J]. Journal of Computational and Applied Mathematics, 2020, 112418-112418.
Authors:  Ge, X.;  Chen, X. S.;  Vong, S. W.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.1 | Submit date:2022/07/02
Inexact Generalized Noda Iteration  Nonnegative Irreducible Matrix  Perron-frobenius Theory  
Inexact generalized Noda iterations for generalized eigenproblems Journal article
Ge,Xiao, Chen,Xiao Shan, Vong,Seak Weng. Inexact generalized Noda iterations for generalized eigenproblems[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366, 112418.
Authors:  Ge,Xiao;  Chen,Xiao Shan;  Vong,Seak Weng
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.1 | Submit date:2021/03/09
Inexact Generalized Noda Iteration  Nonnegative Irreducible Matrix  Perron–frobenius Theory  Superlinear Convergence  
Noda iterations for generalized eigenproblems following Perron-Frobenius theory Journal article
Chen,Xiao Shan, Vong,Seak Weng, Li,Wen, Xu,Hongguo. Noda iterations for generalized eigenproblems following Perron-Frobenius theory[J]. Numerical Algorithms, 2019, 80(3), 937-955.
Authors:  Chen,Xiao Shan;  Vong,Seak Weng;  Li,Wen;  Xu,Hongguo
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.7/1.9 | Submit date:2021/03/09
Generalized Eigenproblem  Generalized Noda Iteration  M-matrix  Nonnegative Irreducible Matrix  Perron-frobenius Theory  Quadratic Convergence