×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [2]
Institute of Chi... [1]
Authors
SONG YONGHUA [1]
WONG PAK KIN [1]
ZHAO JING [1]
Document Type
Book chapter [1]
Conference paper [1]
Journal article [1]
Date Issued
2018 [1]
2017 [1]
2014 [1]
Language
英語English [3]
Source Publication
Applied Mechanic... [1]
Journal of Moder... [1]
Indexed By
EI [1]
SCIE [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-3 of 3
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Global optimal polynomial approximation for parametric problems in power systems
Journal article
Zhou,Yongzhi, Wu,Hao, Gu,Chenghong, Song,Yonghua. Global optimal polynomial approximation for parametric problems in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2018, 7(3), 500-511.
Authors:
Zhou,Yongzhi
;
Wu,Hao
;
Gu,Chenghong
;
Song,Yonghua
Favorite
|
TC[WOS]:
3
TC[Scopus]:
4
IF:
5.7
/
5.4
|
Submit date:2021/03/09
Galerkin Method
Global Approximation
Load Flow Problems
Optimal Approximation
Parametric Problems
Polynomial Approximation
Global Optimal Locally Weighted Learning-Based Identification Modeling for Azimuth Stern Drive Tug Manoeuvring
Conference paper
Bai, Weiwei, Ren, Junsheng, Che, Chuan, Li, Tieshan, Chen, C. L. Philip, Sun, F, Liu, H, Hu, D. Global Optimal Locally Weighted Learning-Based Identification Modeling for Azimuth Stern Drive Tug Manoeuvring[C], HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY:SPRINGER-VERLAG BERLIN, 2017, 576-583.
Authors:
Bai, Weiwei
;
Ren, Junsheng
;
Che, Chuan
;
Li, Tieshan
;
Chen, C. L. Philip
; et al.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
|
Submit date:2018/10/30
Locally Weighted Learning (Lwl)
Identification Modeling
Azimuth Stern Drive Tug
Global Optimal
Global optimal design and dynamic validation of an independent double wishbone air suspension using genetic algorithm
Book chapter
出自: Applied Mechanics and Materials:Scitec Publications Ltd., 2014, 页码:374-378
Authors:
Zhao J.
;
Wong, Pak Kin
;
Xu T.
;
Deng R.
;
Wei C.Y.
; et al.
Favorite
|
TC[Scopus]:
0
|
Submit date:2019/02/13
Air Suspension
Genetic Algorithm
Global
Optimal Design
Wishbone