UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited Journal article
Wang, Zheng, Ding, Hongming, Pan, Li, Li, Jianhua, Gong, Zhiguo, Yu, Philip S.. From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024.
Authors:  Wang, Zheng;  Ding, Hongming;  Pan, Li;  Li, Jianhua;  Gong, Zhiguo; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:10.2/10.4 | Submit date:2024/11/05
Data Mining  Graph Convolutional Neural Networks  Graph-based Semi-supervised Learning (Gssl)  
Vehicle Trajectory Prediction in Connected Environments via Heterogeneous Context-Aware Graph Convolutional Networks Journal article
Lu, Yuhuan, Wang, Wei, Hu, Xiping, Xu, Pengpeng, Zhou, Shengwei, Cai, Ming. Vehicle Trajectory Prediction in Connected Environments via Heterogeneous Context-Aware Graph Convolutional Networks[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 24(8), 8452 - 8464.
Authors:  Lu, Yuhuan;  Wang, Wei;  Hu, Xiping;  Xu, Pengpeng;  Zhou, Shengwei; et al.
Favorite | TC[WOS]:26 TC[Scopus]:26  IF:7.9/8.3 | Submit date:2022/08/05
Trajectory  Vehicle Dynamics  Predictive Models  Convolutional Neural Networks  Roads  Feature Extraction  Dynamics  Traffic Big Data  Graph Neural Networks  Trajectory Prediction  Connected Vehicles  Interaction Context  
Example-feature graph convolutional networks for semi-supervised classification Journal article
Sichao Fu, Weifeng Liu, Kai Zhang, Yicong Zhou. Example-feature graph convolutional networks for semi-supervised classification[J]. Neurocomputing, 2021, 461, 63-76.
Authors:  Sichao Fu;  Weifeng Liu;  Kai Zhang;  Yicong Zhou
Favorite | TC[WOS]:12 TC[Scopus]:13  IF:5.5/5.5 | Submit date:2021/12/08
Convolutional Neural Networks  Data Representation Learning  Example-feature Graph  Graph Convolutional Networks  
EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks and Broad Learning System Conference paper
Wang,Xue Han, Zhang,Tong, Xu,Xiang Min, Chen,Long, Xing,Xiao Fen, Chen,C. L.Philip. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks and Broad Learning System[C], 2019, 1240-1244.
Authors:  Wang,Xue Han;  Zhang,Tong;  Xu,Xiang Min;  Chen,Long;  Xing,Xiao Fen; et al.
Favorite | TC[WOS]:75 TC[Scopus]:89 | Submit date:2021/03/09
Biological Signals  Broad Dynamical Graph Learning System (Bdgls)  Broad Learning System (Bls)  Emotion Recognition  Graph Convolutional Neural Networks (Gcnn)