UM

Browse/Search Results:  1-10 of 24 Help

Selected(0)Clear Items/Page:    Sort:
Neighbor Distribution Learning for Minority Class Augmentation Journal article
Zhou, Mengting, Gong, Zhiguo. Neighbor Distribution Learning for Minority Class Augmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12), 8901-8913.
Authors:  Zhou, Mengting;  Gong, Zhiguo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.9/8.8 | Submit date:2024/09/03
Training  Topology  Graph Neural Networks  Data Models  Accuracy  Task Analysis  Image Color Analysis  Class-imbalanced Learning  Data Mining  Node Classification  
From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited Journal article
Wang, Zheng, Ding, Hongming, Pan, Li, Li, Jianhua, Gong, Zhiguo, Yu, Philip S.. From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024.
Authors:  Wang, Zheng;  Ding, Hongming;  Pan, Li;  Li, Jianhua;  Gong, Zhiguo; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:10.2/10.4 | Submit date:2024/11/05
Data Mining  Graph Convolutional Neural Networks  Graph-based Semi-supervised Learning (Gssl)  
Investigating Material Interface Diffusion Phenomena through Graph Neural Networks in Applied Materials Journal article
Zhao, Zirui, Li, Hai Feng. Investigating Material Interface Diffusion Phenomena through Graph Neural Networks in Applied Materials[J]. ACS Applied Materials & Interfaces, 2024, 16(39), 53153-53162.
Authors:  Zhao, Zirui;  Li, Hai Feng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.3/8.7 | Submit date:2024/10/10
Graph Neural Networks (Gnns)  Interface Diffusion  Material Properties Prediction  Atomic Structure Modeling  Semiconductor Interfaces  
Predicting doping strategies for ternary nickel–cobalt–manganese cathode materials to enhance battery performance using graph neural networks Journal article
Zhao, Zirui, Luo, Dong, Wu, Shuxing, Sun, Kaitong, Lin, Zhan, Li, Hai Feng. Predicting doping strategies for ternary nickel–cobalt–manganese cathode materials to enhance battery performance using graph neural networks[J]. Journal of Energy Storage, 2024, 98, 112982.
Authors:  Zhao, Zirui;  Luo, Dong;  Wu, Shuxing;  Sun, Kaitong;  Lin, Zhan; et al.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:8.9/9.0 | Submit date:2024/08/05
Doping Strategies  Electrochemical Performance  Graph Neural Networks  Lithium-ion Batteries  Ternary Nickel–cobalt–manganese Cathode Materials  
DyGKT: Dynamic Graph Learning for Knowledge Tracing Conference paper
KE CHENG, LINZHI PENG, PENGYANG WANG, JUNCHEN YE, LEILEI SUN, BOWEN DU. DyGKT: Dynamic Graph Learning for Knowledge Tracing[C], New York, NY, USA:Association for Computing Machinery, 2024, 409-420.
Authors:  KE CHENG;  LINZHI PENG;  PENGYANG WANG;  JUNCHEN YE;  LEILEI SUN; et al.
Favorite | TC[Scopus]:1 | Submit date:2024/08/28
Dynamic Graph  Educational Data Mining  Graph Neural Networks  Knowledge Tracing  
Generalized Few-Shot Node Classification With Graph Knowledge Distillation Journal article
Wang, Jialong, Zhou, Mengting, Zhang, Shilong, Gong, Zhiguo. Generalized Few-Shot Node Classification With Graph Knowledge Distillation[J]. IEEE Transactions on Computational Social Systems, 2024.
Authors:  Wang, Jialong;  Zhou, Mengting;  Zhang, Shilong;  Gong, Zhiguo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.5/4.6 | Submit date:2024/05/16
Few-shot Learning (Fsl)  Graph Neural Networks (Gnns)  Knowledge Distillation  Node Classification  
Informative Nodes Mining for Class-Imbalanced Representation Learning Journal article
Zhou, Mengting, Gong, Zhiguo. Informative Nodes Mining for Class-Imbalanced Representation Learning[J]. IEEE Transactions on Computational Social Systems, 2024.
Authors:  Zhou, Mengting;  Gong, Zhiguo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.5/4.6 | Submit date:2024/05/16
Class Imbalanced Learning  Costs  Graph Neural Network (Gnn)  Graph Neural Networks  Node Classification  Representation Learning  Social Networking (Online)  Task Analysis  Training  Training Data  
Temporal inductive path neural network for temporal knowledge graph reasoning Journal article
Dong, Hao, Wang, Pengyang, Xiao, Meng, Ning, Zhiyuan, Wang, Pengfei, Zhou, Yuanchun. Temporal inductive path neural network for temporal knowledge graph reasoning[J]. Artificial Intelligence, 2024, 329, 104085.
Authors:  Dong, Hao;  Wang, Pengyang;  Xiao, Meng;  Ning, Zhiyuan;  Wang, Pengfei; et al.
Favorite | TC[WOS]:3 TC[Scopus]:6  IF:5.1/4.8 | Submit date:2024/05/02
Graph Neural Networks  Knowledge Graph Reasoning  Temporal Knowledge Graph  Temporal Reasoning  
Fine-Grained Multimodal DeepFake Classification via Heterogeneous Graphs Journal article
Yin, Qilin, Lu, Wei, Cao, Xiaochun, Luo, Xiangyang, Zhou, Yicong, Huang, Jiwu. Fine-Grained Multimodal DeepFake Classification via Heterogeneous Graphs[J]. International Journal of Computer Vision, 2024.
Authors:  Yin, Qilin;  Lu, Wei;  Cao, Xiaochun;  Luo, Xiangyang;  Zhou, Yicong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:11.6/14.5 | Submit date:2024/07/04
Audio-visual Model  Graph Neural Networks  Heterogeneous Graphs  Multimodal Deepfake Classification  
PERT-GNN: Latency Prediction for Microservice-based Cloud-Native Applications via Graph Neural Networks Conference paper
Da Sun Handason Tam, Yang Liu, Huanle Xu, Siyue Xie, Wing Cheong Lau. PERT-GNN: Latency Prediction for Microservice-based Cloud-Native Applications via Graph Neural Networks[C], 2023, 2155 - 2165.
Authors:  Da Sun Handason Tam;  Yang Liu;  Huanle Xu;  Siyue Xie;  Wing Cheong Lau
Favorite | TC[WOS]:2 TC[Scopus]:5 | Submit date:2023/07/30
Delay Prediction  Microservices  Cloud Computing  Graph Neural Networks  Graph Transformers  Machine Learning