×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [9]
Authors
CHEN YANG [7]
JIN XIAO QING [2]
VONG SEAK WENG [1]
Document Type
Journal article [10]
Date Issued
2022 [1]
2021 [2]
2020 [1]
2019 [2]
2015 [1]
2012 [2]
More...
Language
英語English [8]
Source Publication
MATHEMATICAL MET... [2]
Mathematics [2]
Numerical Algebr... [2]
APPLIED MATHEMAT... [1]
JOURNAL OF MATHE... [1]
Journal of Appro... [1]
More...
Indexed By
SCIE [7]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 10
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Asymptotic relations for semi-classical Laguerre orthogonal polynomials and the associated Hankel determinants
Journal article
Pengju Han, Yang Chen. Asymptotic relations for semi-classical Laguerre orthogonal polynomials and the associated Hankel determinants[J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022.
Authors:
Pengju Han
;
Yang Chen
Favorite
|
TC[Scopus]:
0
IF:
1.2
/
1.3
|
Submit date:2022/07/04
Random Matrix Theory
Hankel Determinant
Semi-classical Laguerre Weight
Ladder Operators
Orthogonal Polynomials
The hankel determinants from a singularly perturbed jacobi weight
Journal article
Han, Pengju, Chen, Yang. The hankel determinants from a singularly perturbed jacobi weight[J]. Mathematics, 2021, 9(22).
Authors:
Han, Pengju
;
Chen, Yang
Favorite
|
TC[Scopus]:
0
IF:
2.3
/
2.2
|
Submit date:2021/12/08
Hankel Determinant
Ladder Operators
Painlevé v
Random Matrix Theory
Singularly Perturbed Jacobi Weight
The Hankel determinants from a Singularly Pertubed Jacobi weight
Journal article
Han, P., Chen, Y.. The Hankel determinants from a Singularly Pertubed Jacobi weight[J]. Mathematics, 2021, 1-17.
Authors:
Han, P.
;
Chen, Y.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
2.3
/
2.2
|
Submit date:2022/06/27
Hankel Determinants
Jacobi Weight
Random Matrix Theory.
Painlevé VI, Painlevé III, and the Hankel determinant associated with a degenerate Jacobi unitary ensemble
Journal article
Min,Chao, Chen,Yang. Painlevé VI, Painlevé III, and the Hankel determinant associated with a degenerate Jacobi unitary ensemble[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43(15), 9169-9184.
Authors:
Min,Chao
;
Chen,Yang
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
IF:
2.1
/
2.0
|
Submit date:2021/03/09
Degenerate Jacobi Unitary Ensemble
Double Scaling Analysis
Hankel Determinant
Ladder Operators
Painlevé Equations
Random Matrix Theory
Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation
Journal article
Chen,Yang, Sikorowski,J., Zhu,Mengkun. Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation[J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 363, 124628.
Authors:
Chen,Yang
;
Sikorowski,J.
;
Zhu,Mengkun
Favorite
|
TC[WOS]:
7
TC[Scopus]:
5
IF:
3.5
/
3.1
|
Submit date:2021/03/09
Extremely Ill-conditioned Hankel Matrices
Parallel Eigensolver
Random Matrix
Smallest Eigenvalue
The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight
Journal article
Mengkun Zhu, Niall Emmart, Yang Chen, Charles Weems. The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(9), 3272-3288.
Authors:
Mengkun Zhu
;
Niall Emmart
;
Yang Chen
;
Charles Weems
Favorite
|
TC[WOS]:
7
TC[Scopus]:
7
IF:
2.1
/
2.0
|
Submit date:2019/05/31
Asymptotics
Hankel Matrices
Random Matrix
Smallest Eigenvalue
Orthogonal Polynomials
Asymptotics of determinants of Hankel matrices via non-linear difference equations
Journal article
Basor,Estelle L., Chen,Yang, Haq,Nazmus S.. Asymptotics of determinants of Hankel matrices via non-linear difference equations[J]. Journal of Approximation Theory, 2015, 198, 63-110.
Authors:
Basor,Estelle L.
;
Chen,Yang
;
Haq,Nazmus S.
Favorite
|
TC[WOS]:
11
TC[Scopus]:
11
IF:
0.9
/
0.9
|
Submit date:2021/03/09
Asymptotic Expansions
Elliptic Orthogonal Polynomials
Hankel Determinants
Non-linear Difference Equations
Painlevé Equations
Random Matrix Theory
On some inverse singular value problems with toeplitz-related structure
Journal article
Bai Z.-J., Jin X.-Q., Vong S.-W.. On some inverse singular value problems with toeplitz-related structure[J]. Numerical Algebra, Control and Optimization, 2012, 2(1), 187-192.
Authors:
Bai Z.-J.
;
Jin X.-Q.
;
Vong S.-W.
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
|
Submit date:2018/12/24
Inverse Singular Value Problem
Toeplitz Matrix
Toeplitz-plus-hankel Matrix
On some inverse singular value problems with toeplitz-related structure
Journal article
Bai,Zheng Jian, Jin,Xiao Qing, Vong,Seak Weng. On some inverse singular value problems with toeplitz-related structure[J]. Numerical Algebra, Control and Optimization, 2012, 2(1), 187-192.
Authors:
Bai,Zheng Jian
;
Jin,Xiao Qing
;
Vong,Seak Weng
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
IF:
1.1
/
1.0
|
Submit date:2021/03/09
Inverse Singular Value Problem
Toeplitz Matrix
Toeplitz-plus-hankel Matrix
A wavelet method for the fredholm integro-differential equations with convolution kernel
Journal article
Jin X.-Q., Sin V.-K., Yuan J.-Y.. A wavelet method for the fredholm integro-differential equations with convolution kernel[J]. Journal of Computational Mathematics, 1999, 17(4), 435-440.
Authors:
Jin X.-Q.
;
Sin V.-K.
;
Yuan J.-Y.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
|
Submit date:2019/02/11
Fredholm Integro-differential Equation
Hankel Matrix
Kernel
Pcg Method
Sobolev Space
Toeplitz Matrix
Wavelet Transform