UM

Browse/Search Results:  1-10 of 11 Help

Selected(0)Clear Items/Page:    Sort:
IFKMHC: Implicit Fuzzy K-Means Model for High-Dimensional Data Clustering Journal article
Shi, Zhaoyin, Chen, Long, Ding, Weiping, Zhong, Xiaopin, Wu, Zongze, Chen, Guang Yong, Zhang, Chuanbin, Wang, Yingxu, Chen, C. L.P.. IFKMHC: Implicit Fuzzy K-Means Model for High-Dimensional Data Clustering[J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024.
Authors:  Shi, Zhaoyin;  Chen, Long;  Ding, Weiping;  Zhong, Xiaopin;  Wu, Zongze; et al.
Favorite | TC[WOS]:1 TC[Scopus]:2  IF:9.4/10.3 | Submit date:2024/07/04
Fuzzy Clustering  Graph Clustering  High-dimensional Data  Implicit Model  
Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations Journal article
Liang Jiang, Peter C.B. Phillips, Yubo Tao, Yichong Zhang. Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations[J]. Journal of Econometrics, 2022, 234(2), 758-776.
Authors:  Liang Jiang;  Peter C.B. Phillips;  Yubo Tao;  Yichong Zhang
Favorite | TC[WOS]:2 TC[Scopus]:6  IF:9.9/6.7 | Submit date:2022/09/15
Covariate-adaptive Randomization  High-dimensional Data  Regression Adjustment  Quantile Treatment Effects  
Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations Journal article
Liang Jiang, Peter C.B. Phillips, Yubo Tao, Yichong Zhang. Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations[J]. Journal of Econometrics, 2022, 234(2), 758-776.
Authors:  Liang Jiang;  Peter C.B. Phillips;  Yubo Tao;  Yichong Zhang
Favorite | TC[WOS]:2 TC[Scopus]:6  IF:9.9/6.7 | Submit date:2023/07/26
Covariate-adaptive Randomization  High-dimensional Data  Quantile Treatment Effects  Regression Adjustment  
Broad and deep neural network for high-dimensional data representation learning Journal article
Feng, Qiying, Liu, Zhulin, Chen, C. L.Philip. Broad and deep neural network for high-dimensional data representation learning[J]. Information Sciences, 2022, 599, 127-146.
Authors:  Feng, Qiying;  Liu, Zhulin;  Chen, C. L.Philip
Favorite | TC[WOS]:16 TC[Scopus]:15  IF:0/0 | Submit date:2022/05/13
Broad And Deep Architecture  Broading Learning System  High-dimensional Data  Representation Learning  
GNNVis: Visualize Large-Scale Data by Learning a Graph Neural Network Representation Conference paper
Yajun Huang, Jingbin Zhang, Yiyang Yang, Zhiguo Gong, Zhifeng Hao. GNNVis: Visualize Large-Scale Data by Learning a Graph Neural Network Representation[C], 2020, 545-554.
Authors:  Yajun Huang;  Jingbin Zhang;  Yiyang Yang;  Zhiguo Gong;  Zhifeng Hao
Favorite | TC[WOS]:4 TC[Scopus]:5 | Submit date:2021/03/09
Big Data  Graph Neural Networks  High-dimensional Data  Neural Networks  Semi-supervised Learning  Visualization  
HIGH-DIMENSIONAL COVARIANCE MATRICES IN ELLIPTICAL DISTRIBUTIONS WITH APPLICATION TO SPHERICAL TEST Journal article
Hu, Jiang, Li, Weiming, Liu, Zhi, Zhou, Wang. HIGH-DIMENSIONAL COVARIANCE MATRICES IN ELLIPTICAL DISTRIBUTIONS WITH APPLICATION TO SPHERICAL TEST[J]. ANNALS OF STATISTICS, 2019, 47(1), 527-555.
Authors:  Hu, Jiang;  Li, Weiming;  Liu, Zhi;  Zhou, Wang
Favorite | TC[WOS]:21 TC[Scopus]:23  IF:3.2/4.8 | Submit date:2019/01/17
Covariance Matrix  High-dimensional Data  Elliptical Distribution  Sphericity Test  
Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification Journal article
Yu, Zhiwen, Zhang, Yidong, You, Jane, Chen, C. L.Philip, Wong, Hau San, Han, Guoqiang, Zhang, Jun. Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification[J]. IEEE Transactions on Cybernetics, 2019, 49(2), 366-379.
Authors:  Yu, Zhiwen;  Zhang, Yidong;  You, Jane;  Chen, C. L.Philip;  Wong, Hau San; et al.
Favorite | TC[WOS]:52 TC[Scopus]:61  IF:9.4/10.3 | Submit date:2022/04/15
Classification  Ensemble Learning  Feature Selection  High Dimensional Data  Optimization  Semi-supervised Learning  
Sparse bayesian kernel multinomial probit regression model for high-dimensional data classification Journal article
Aijun Yang, Xuejun Jiang, Lianjie Shu, Pengfei Liu. Sparse bayesian kernel multinomial probit regression model for high-dimensional data classification[J]. Communications in Statistics - Theory and Methods, 2019, 48(1), 165-176.
Authors:  Aijun Yang;  Xuejun Jiang;  Lianjie Shu;  Pengfei Liu
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:0.6/0.8 | Submit date:2019/08/01
Correlation Prior  High-dimensional Data Classification  Multicategory Support Vector Machine  Sparse Bayesian Method  
Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis Journal article
Aijun Yang, Xuejun Jiang, Lianjie Shu, Jinguan Lin. Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis[J]. COMPUTATIONAL STATISTICS, 2017, 32(1), 127-143.
Authors:  ; et al.
Favorite | TC[WOS]:5 TC[Scopus]:6  IF:1.0/1.3 | Submit date:2018/10/30
Bayesian Variable Selection  Sparse Prior  Correlation Prior  Probit Model  High-dimensional Data Classification  
Hyperspectral image classification using distance metric based 1-dimensional manifold embedding Conference paper
HUI-WU LUO, YU-LONG WANG, YUAN YAN TANG, CHUN-LI LI, JIAN-ZHONG WANG. Hyperspectral image classification using distance metric based 1-dimensional manifold embedding[C]:IEEE, 2016, 247-251.
Authors:  HUI-WU LUO;  YU-LONG WANG;  YUAN YAN TANG;  CHUN-LI LI;  JIAN-ZHONG WANG
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/02/11
Classification  Feature Extraction  High Dimensional Data Analysis  Manifold Learning  Remote Sensing