UM

Browse/Search Results:  1-10 of 14 Help

Selected(0)Clear Items/Page:    Sort:
A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum Journal article
Zhao, Zhi, Yao, Teng Teng, Bai, Zheng Jian, Jin, Xiao Qing. A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum[J]. Numerical Algorithms, 2022, 92, 1951–1981.
Authors:  Zhao, Zhi;  Yao, Teng Teng;  Bai, Zheng Jian;  Jin, Xiao Qing
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.7/1.9 | Submit date:2023/01/30
Symmetric Nonnegative Inverse Eigenvalue Problem  Underdetermined Equation  Riemannian Newton Dogleg Method  Preconditioner  
The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Zhao, Zhi, Jin, Xiao Qing, Yao, Teng Teng. The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2022, 405, 113971.
Authors:  Zhao, Zhi;  Jin, Xiao Qing;  Yao, Teng Teng
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.1/2.1 | Submit date:2022/05/13
Nonlinear Least Squares Problem  Parameterized Least Squares Inverse Eigenvalue Problem  Two-step Perturbed Gauss–newton Method  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen,Chao Tao, Chen,Xiao Shan, Sun,Hai Wei. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algebra and Its Applications, 2020, 585, 241-262.
Authors:  Wen,Chao Tao;  Chen,Xiao Shan;  Sun,Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2021/03/09
Chebyshev Method  Cubical Convergence  Inexact Newton-like Method  Inverse Eigenvalue Problem  Two-step  
A geometric Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Yao,Teng Teng, Bai,Zheng Jian, Jin,Xiao Qing, Zhao,Zhi. A geometric Gauss–Newton method for least squares inverse eigenvalue problems[J]. BIT Numerical Mathematics, 2020, 60(3), 825-852.
Authors:  Yao,Teng Teng;  Bai,Zheng Jian;  Jin,Xiao Qing;  Zhao,Zhi
Favorite | TC[WOS]:7 TC[Scopus]:8  IF:1.6/1.8 | Submit date:2021/03/09
Geometric Gauss–newton Method  Parameterized Least Squares Inverse Eigenvalue Problem  Preconditioner  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen, C.T., Chen, X.S., Sun, H. W.. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algegra and its Applications, 2020, 241-262.
Authors:  Wen, C.T.;  Chen, X.S.;  Sun, H. W.
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2022/07/25
Inverse Eigenvalue Problem  Two-step  Inexact Newton-like Method  Chebyshev Method  Cubical Convergence  
Some recent developments in matrix analysis and computation Conference paper
Jin, X. Q., Vong, S. W., Xie, Z. J., Zhao, Z.. Some recent developments in matrix analysis and computation[C], 2019.
Authors:  Jin, X. Q.;  Vong, S. W.;  Xie, Z. J.;  Zhao, Z.
Favorite |  | Submit date:2022/07/26
Preconditioner  Toeplitz tensor  commutator  norm inequality  stochastic inverse eigenvalue problem  Riemannian optimization  
TWO-STEP NEWTON TYPE METHODS FOR SOLVING INVERSE EIGENVALUE PROBLEMS Journal article
Chen, X.S., Wen, C.T., Sun, H. W.. TWO-STEP NEWTON TYPE METHODS FOR SOLVING INVERSE EIGENVALUE PROBLEMS[J]. Numerical Linear Algebra with Applications, 2018, e.2185-2185.
Authors:  Chen, X.S.;  Wen, C.T.;  Sun, H. W.
Favorite | TC[WOS]:10 TC[Scopus]:10 | Submit date:2022/07/25
Inverse Eigenvalue Problem  Two-step Newton Type Method  Super Quadratically Convergent  
Two-step Newton-type methods for solving inverse eigenvalue problems Journal article
Chen,Xiao Shan, Wen,Chao Tao, Sun,Hai wei. Two-step Newton-type methods for solving inverse eigenvalue problems[J]. Numerical Linear Algebra with Applications, 2018, 25(5).
Authors:  Chen,Xiao Shan;  Wen,Chao Tao;  Sun,Hai wei
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:1.8/1.8 | Submit date:2019/05/27
Inverse Eigenvalue Problem  Super Quadratically Convergent  Two-step Newton-type Method  
An Ulm-like cayley transform method for inverse eigenvalue problems with multiple eigenvalues Journal article
Shen W., Li C., Jin X.. An Ulm-like cayley transform method for inverse eigenvalue problems with multiple eigenvalues[J]. Numerical Mathematics, 2016, 9(4), 664-685.
Authors:  Shen W.;  Li C.;  Jin X.
Favorite | TC[WOS]:11 TC[Scopus]:9 | Submit date:2019/02/11
Inverse Eigenvalue Problem  Nonlinear Equation  Ulm-like Method  
A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems Journal article
Zhao Z., Jin X.-Q., Bai Z.-J.. A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems[J]. SIAM Journal on Numerical Analysis, 2016, 54(4), 2015-2035.
Authors:  Zhao Z.;  Jin X.-Q.;  Bai Z.-J.
Favorite | TC[WOS]:23 TC[Scopus]:25 | Submit date:2019/02/11
Geometric Nonlinear Conjugate Gradient Method  Inverse Eigenvalue Problem  Isospectral Flow Method  Oblique Manifold  Stochastic Matrix