×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [3]
THE STATE KEY LA... [1]
Authors
HU GUANGHUI [3]
Document Type
Journal article [5]
Date Issued
2023 [2]
2019 [1]
2018 [2]
Language
英語English [4]
Source Publication
East Asian Journ... [1]
JOURNAL OF COMPU... [1]
JOURNAL OF SCIEN... [1]
Journal of Compu... [1]
Numerical Mathem... [1]
Indexed By
SCIE [4]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
A Convergence Analysis of a Structure-Preserving Gradient Flow Method for the All-Electron Kohn-Sham Model
Journal article
Shen, Yedan, Wang, Ting, Zhou, Jie, Hu, Guanghui. A Convergence Analysis of a Structure-Preserving Gradient Flow Method for the All-Electron Kohn-Sham Model[J]. Numerical Mathematics: Theory, Methods and Applications, 2023, 16(3), 597-621.
Authors:
Shen, Yedan
;
Wang, Ting
;
Zhou, Jie
;
Hu, Guanghui
Favorite
|
TC[WOS]:
5
TC[Scopus]:
2
IF:
1.9
/
1.3
|
Submit date:2023/08/31
Kohn-sham Density Functional Theory
Gradient Flow Model
Structure-preserving
Linear Scheme
Convergence Analysis
A Linearized Structure-Preserving Numerical Scheme for a Gradient Flow Model of the Kohn-Sham Density Functional Theory
Journal article
Hu, Guanghui, Wang, Ting, Zhou, Jie. A Linearized Structure-Preserving Numerical Scheme for a Gradient Flow Model of the Kohn-Sham Density Functional Theory[J]. East Asian Journal on Applied Mathematics, 2023, 13(2), 299-319.
Authors:
Hu, Guanghui
;
Wang, Ting
;
Zhou, Jie
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
IF:
1.2
/
1.0
|
Submit date:2024/02/23
Adaptive Strategy
Gradient Flow Model
Kohn-sham Density Functional Theory
Linear Scheme
Structure-preserving
An Asymptotics-Based Adaptive Finite Element Method for Kohn–Sham Equation
Journal article
Shen, Yedan, Kuang, Yang, Hu, Guanghui. An Asymptotics-Based Adaptive Finite Element Method for Kohn–Sham Equation[J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79(1), 464–492.
Authors:
Shen, Yedan
;
Kuang, Yang
;
Hu, Guanghui
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
2.8
/
2.7
|
Submit date:2019/06/03
Electronic Structure Calculation
Coarsening Mesh
Kohn–sham Density Functional Theory
Adaptive Finite Element Method
Ground State Energy
A multilevel correction adaptive finite element method for Kohn-Sham equation
Journal article
Hu, Guanghui, Xie, Hehu, Xu, Fei. A multilevel correction adaptive finite element method for Kohn-Sham equation[J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355, 436-449.
Authors:
Hu, Guanghui
;
Xie, Hehu
;
Xu, Fei
Favorite
|
TC[WOS]:
22
TC[Scopus]:
25
IF:
3.8
/
4.5
|
Submit date:2018/10/30
Density Functional Theory
Kohn-sham Equation
Multilevel Correction
Adaptive Finite Element Method
A multilevel correction adaptive finite element method for Kohn–Sham equation
Journal article
Hu, Guanghui, Xie, Hehu, Xu, Fei. A multilevel correction adaptive finite element method for Kohn–Sham equation[J]. Journal of Computational Physics, 2018, 355, 436-449.
Authors:
Hu, Guanghui
;
Xie, Hehu
;
Xu, Fei
Favorite
|
TC[WOS]:
22
TC[Scopus]:
25
|
Submit date:2019/02/13
Adaptive Finite Element Method
Density Functional Theory
Kohn–sham Equation
Multilevel Correction