UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients Journal article
Fang,Zhi Wei, Sun,Hai Wei, Wei,Hui Qin. An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients[J]. International Journal of Computer Mathematics, 2020, 97(3), 523-545.
Authors:  Fang,Zhi Wei;  Sun,Hai Wei;  Wei,Hui Qin
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:1.7/1.5 | Submit date:2019/05/27
Approximate Inverse  Circulant Matrix  Fast Fourier Transform  Fractional Diffusion Equation  Krylov Subspace Methods  Piecewise Continuous Coefficients  Toeplitz Matrix  
Circulant preconditioners for a kind of spatial fractional diffusion equations Journal article
Fang, Z.W., Ng, M.K., Sun, H. W.. Circulant preconditioners for a kind of spatial fractional diffusion equations[J]. Numerical Algorithm, 2019, 729-747.
Authors:  Fang, Z.W.;  Ng, M.K.;  Sun, H. W.
Favorite | TC[WOS]:12 TC[Scopus]:15  IF:1.7/1.9 | Submit date:2022/07/25
Fractional Diffusion Equation  Toeplitz Matrix  Circulant Preconditioner  Fast Fourier Transform  Krylov Subspace Methods  
Circulant preconditioners for a kind of spatial fractional diffusion equations Journal article
Zhi-Wei Fang, Michael K. Ng, Hai-Wei Sun. Circulant preconditioners for a kind of spatial fractional diffusion equations[J]. Numerical Algorithms, 2019, 82(2), 729-747.
Authors:  Zhi-Wei Fang;  Michael K. Ng;  Hai-Wei Sun
Favorite | TC[WOS]:12 TC[Scopus]:15  IF:1.7/1.9 | Submit date:2019/08/09
Fractional Diffusion Equation  Fast Fourier Transform  Krylov Subspace Methods  Toeplitz Matrix  Circulant Preconditioner  
A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations Journal article
Lin,Xue Lei, Ng,Michael K., Sun,Hai Wei. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations[J]. SIAM Journal on Matrix Analysis and Applications, 2017, 38(4), 1580-1614.
Authors:  Lin,Xue Lei;  Ng,Michael K.;  Sun,Hai Wei
Adobe PDF | Favorite | TC[WOS]:50 TC[Scopus]:51 | Submit date:2019/05/27
Diagonal-times-toeplitz Matrices  Preconditioners  Space-fractional Diffusion Equations Krylov Subspace Methods  Variable Coecients  
A SPLITTING PRECONDITIONER FOR TOEPLITZ-LIKE LINEAR SYSTEMS ARISING FROM FRACTIONAL DIFFUSION EQUATIONS Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A SPLITTING PRECONDITIONER FOR TOEPLITZ-LIKE LINEAR SYSTEMS ARISING FROM FRACTIONAL DIFFUSION EQUATIONS[J]. SIAM Journal on Matrix Analysis and Applications, 2017, 1580-1614.
Authors:  Lin, X.L.;  Ng, M.K.;  Sun, H. W.
Favorite | TC[WOS]:50 TC[Scopus]:51  IF:1.5/1.9 | Submit date:2022/07/25
Diagonal-times-toeplitz Matrices  Preconditioners  Variable Coeffi Cients  Space-fractional Diffusion Equations  Krylov Subspace Methods  
Circulant preconditioning technique for barrier options pricing under fractional diffusion models Journal article
Wenfei Wang, Xu Chen, Deng Ding, Siu-Long Lei. Circulant preconditioning technique for barrier options pricing under fractional diffusion models[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92(12), 2596-2614.
Authors:  Wenfei Wang;  Xu Chen;  Deng Ding;  Siu-Long Lei
Favorite | TC[WOS]:29 TC[Scopus]:31  IF:1.7/1.5 | Submit date:2019/05/22
Barrier Options Pricing  Circulant Preconditioner  Fractional Diffusion Equations  Krylov Subspace Methods  Lévy Process  
Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations Journal article
Pan,Jianyu, Ke,Rihuan, Ng,Michael K., Sun,Hai Wei. Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations[J]. SIAM Journal on Scientific Computing, 2014, 36(6), A2698-A2719.
Authors:  Pan,Jianyu;  Ke,Rihuan;  Ng,Michael K.;  Sun,Hai Wei
Favorite | TC[WOS]:133 TC[Scopus]:135 | Submit date:2019/05/27
Approximate Inverse  Circulant Matrix  Fast Fourier Transform  Fractional Diffusion Equation  Krylov Subspace Methods  Toeplitz Matrix