UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix Journal article
Chen, Yongyong, Xiao, Xiaolin, Zhou, Yicong. Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix[J]. Pattern Recognition, 2020, 106, 107441.
Authors:  Chen, Yongyong;  Xiao, Xiaolin;  Zhou, Yicong
Favorite | TC[WOS]:103 TC[Scopus]:115  IF:7.5/7.6 | Submit date:2021/12/06
Adaptive Weights  Local Manifold  Low-rank Tensor Representation  Multi-view Subspace Clustering  Tensor-singular Value Decomposition  
Multi-view Clustering via Simultaneously Learning Graph Regularized Low-Rank Tensor Representation and Affinity Matrix Conference paper
Chen, Yongyong, Xiao, Xiaolin, Zhou, Yicong. Multi-view Clustering via Simultaneously Learning Graph Regularized Low-Rank Tensor Representation and Affinity Matrix[C], IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE, 2019, 1348-1353.
Authors:  Chen, Yongyong;  Xiao, Xiaolin;  Zhou, Yicong
Favorite | TC[WOS]:19 TC[Scopus]:21 | Submit date:2022/05/17
Multi-view Clustering  Low-rank Tensor Representation  Tucker Decomposition  Adaptive Weights  Local Manifold  
Learning the Distribution Preserving Semantic Subspace for Clustering Journal article
Tian, Jinyu, Zhang, Taiping, Qin, Anyong, Shang, Zhaowei, Tang, Yuan Yan. Learning the Distribution Preserving Semantic Subspace for Clustering[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26(12), 5950-5965.
Authors:  Tian, Jinyu;  Zhang, Taiping;  Qin, Anyong;  Shang, Zhaowei;  Tang, Yuan Yan
Favorite | TC[WOS]:20 TC[Scopus]:22  IF:10.8/12.1 | Submit date:2018/10/30
Clustering  Distribution Preserving Indexing  Semantic Representation  Local Manifold Structure  
A computational and theoretical analysis of local null space discriminant method for pattern classification Journal article
Cheng M., Fang B., Tang Y.Y., Chen H.. A computational and theoretical analysis of local null space discriminant method for pattern classification[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2011, 25(1), 117-134.
Authors:  Cheng M.;  Fang B.;  Tang Y.Y.;  Chen H.
Favorite | TC[WOS]:1 TC[Scopus]:2 | Submit date:2019/02/11
Dimensionality Reduction  Local Discriminant Analysis  Local Null Space  Manifold Learning  Pattern Classification  
Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion Journal article
Fang B., Cheng M., Tang Y.Y., He G.. Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion[J]. NEUROCOMPUTING, 2009, 73(1-3), 536-541.
Authors:  Fang B.;  Cheng M.;  Tang Y.Y.;  He G.
Favorite | TC[WOS]:13 TC[Scopus]:20  IF:5.5/5.5 | Submit date:2019/02/11
Between-class Separability Criterion (Bcsc)  Feature Extraction  Local Discriminant Analysis  Manifold Learning  Marginal Fisher Analysis (Mfa)