UM

Browse/Search Results:  1-10 of 21 Help

Selected(0)Clear Items/Page:    Sort:
A machine-learning model of academic resilience in the times of the COVID-19 pandemic: Evidence drawn from 79 countries/economies in the PISA 2022 mathematics study Journal article
Cheung, Kwok cheung, Sit, Pou seong, Zheng, Jia qi, Lam, Chi chio, Mak, Soi kei, Ieong, Man kai. A machine-learning model of academic resilience in the times of the COVID-19 pandemic: Evidence drawn from 79 countries/economies in the PISA 2022 mathematics study[J]. British Journal of Educational Psychology, 2024.
Authors:  Cheung, Kwok cheung;  Sit, Pou seong;  Zheng, Jia qi;  Lam, Chi chio;  Mak, Soi kei; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.1/4.0 | Submit date:2024/10/10
Academic Resilience  Explainable Artificial Intelligence  Gender Differences  Machine Learning  Mathematical Literacy  Pisa  
Evaluation of Prompts to Simplify Cardiovascular Disease Information Generated Using a Large Language Model: Cross-Sectional Study Journal article
Mishra, Vishala, Sarraju, Ashish, Kalwani, Neil M., Dexter, Joseph P.. Evaluation of Prompts to Simplify Cardiovascular Disease Information Generated Using a Large Language Model: Cross-Sectional Study[J]. Journal of Medical Internet Research, 2024, 26(1), e55388.
Authors:  Mishra, Vishala;  Sarraju, Ashish;  Kalwani, Neil M.;  Dexter, Joseph P.
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:5.8/6.7 | Submit date:2024/05/16
Artificial Intelligence  Cardiology  Cardiovascular  Chatgpt  Digital Health  Education  Educational  Generative  Gpt  Health Communication  Health Communication  Health Literacy  Heart  Human-in-the-loop  Language Model  Language Models  Large Language Model  Machine Learning  Natural Language Processing  Nlp  Patient-physician Communication  Prevention  Prompt Engineering  
Introduction to Computational Pharmaceutics Book chapter
出自: Exploring Computational Pharmaceutics - Ai and Modeling in Pharma 4.0:wiley, 2024, 页码:1-9
Authors:  Wang, Nannan;  Wang, Wei;  Zhong, Hao;  Ouyang, Defang
Favorite | TC[Scopus]:0 | Submit date:2024/10/10
Artificial Intelligence  Computational Pharmaceutics  Drug Formulation Development  Machine Learning  Multiscale Simulation  
Opportunities and Challenges of Artificial Intelligence (AI) in Drug Delivery Book chapter
出自: Exploring Computational Pharmaceutics - Ai and Modeling in Pharma 4.0:wiley, 2024, 页码:10-58
Authors:  Ye, Zhuyifan;  Ouyang, Defang
Favorite | TC[Scopus]:0 | Submit date:2024/10/10
Artificial Intelligence  Deep Learning  Drug Delivery  Formulation Development  Machine Learning  Pharmaceutics  
Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects Journal article
Bai, Ganggang, Sun, Chance, Guo, Ziang, Wang, Yangjing, Zeng, Xincheng, Su, Yuhong, Zhao, Qi, Ma, Buyong. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects[J]. Seminars in Cancer Biology, 2023, 95, 13-24.
Authors:  Bai, Ganggang;  Sun, Chance;  Guo, Ziang;  Wang, Yangjing;  Zeng, Xincheng; et al.
Adobe PDF | Favorite | TC[WOS]:10 TC[Scopus]:13  IF:12.1/13.2 | Submit date:2023/08/25
Antibody  Artificial Intelligence  Antibody Design  Machine Learning  Therapeutic  
Predicting Glass-Forming Ability of Pharmaceutical Compounds by Using Machine Learning Technologies Journal article
Jiang, Junhuang, Ouyang, Defang, Williams, Robert O.. Predicting Glass-Forming Ability of Pharmaceutical Compounds by Using Machine Learning Technologies[J]. AAPS PharmSciTech, 2023, 24(5), 103.
Authors:  Jiang, Junhuang;  Ouyang, Defang;  Williams, Robert O.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:3.4/3.5 | Submit date:2023/07/20
Amorphous Drugs  Artificial Intelligence  Glass-forming Ability  Machine Learning  
Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective Journal article
Huang,Shigao, Yang,Jie, Shen,Na, Xu,Qingsong. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective[J]. Seminars in Cancer Biology, 2023, 89, 30-37.
Authors:  Huang,Shigao;  Yang,Jie;  Shen,Na;  Xu,Qingsong
Favorite | TC[WOS]:70 TC[Scopus]:86  IF:12.1/13.2 | Submit date:2023/08/03
Artificial Intelligence  Lung Cancer Diagnosis  Machine Learning And Deep Learning  Natural Language Processing  Precision Oncology  
The applications of machine learning to predict the forming of chemically stable amorphous solid dispersions prepared by hot-melt extrusion Journal article
Jiang, Junhuang, Lu, Anqi, Ma, Xiangyu, Ouyang, Defang, Williams, Robert O.. The applications of machine learning to predict the forming of chemically stable amorphous solid dispersions prepared by hot-melt extrusion[J]. International Journal of Pharmaceutics-X, 2023, 5, 100164.
Authors:  Jiang, Junhuang;  Lu, Anqi;  Ma, Xiangyu;  Ouyang, Defang;  Williams, Robert O.
Favorite | TC[WOS]:11 TC[Scopus]:12 | Submit date:2023/02/28
Amorphous Solid Dispersion  Artificial Intelligence  Hot-melt Extrusion  Machine Learning  
Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective Journal article
Huang, Shigao, Yang, Jie, Shen, Na, Xu, Qingsong, Zhao, Qi. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective[J]. Seminars in Cancer Biology, 2023, 89, 30-37.
Authors:  Huang, Shigao;  Yang, Jie;  Shen, Na;  Xu, Qingsong;  Zhao, Qi
Favorite | TC[WOS]:70 TC[Scopus]:86  IF:12.1/13.2 | Submit date:2023/02/22
Artificial Intelligence  Lung Cancer Diagnosis  Natural Language Processing  Machine Learning And Deep Learning  Precision Oncology  
Research on Multidimensional Causal Model of Environment in Macao Cotai City Ecological Reserve Conference paper
He, Cheng, Liu, Wenjian, Ren, Jia, Cui, Yani. Research on Multidimensional Causal Model of Environment in Macao Cotai City Ecological Reserve[C], 2023, 174-179.
Authors:  He, Cheng;  Liu, Wenjian;  Ren, Jia;  Cui, Yani
Favorite | TC[Scopus]:0 | Submit date:2024/02/22
artificial intelligence  Bayesian network  causality  environmental decision-making and management  machine learning