×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [2]
THE STATE KEY LA... [1]
Faculty of Educa... [1]
Authors
ZHOU YICONG [1]
SHAO YULIN [1]
Document Type
Journal article [5]
Date Issued
2023 [1]
2022 [1]
2021 [2]
2019 [1]
Language
英語English [5]
Source Publication
IEEE Transaction... [1]
IEEE Transaction... [1]
IEEE Transaction... [1]
Sociological Met... [1]
Symmetry [1]
Indexed By
SCIE [4]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Denoising Noisy Neural Networks: A Bayesian Approach with Compensation
Journal article
Shao,Yulin, Liew,Soung Chang, Gunduz,Deniz. Denoising Noisy Neural Networks: A Bayesian Approach with Compensation[J]. IEEE Transactions on Signal Processing, 2023, 71, 2460 - 2474.
Authors:
Shao,Yulin
;
Liew,Soung Chang
;
Gunduz,Deniz
Favorite
|
TC[WOS]:
2
TC[Scopus]:
4
IF:
4.6
/
5.2
|
Submit date:2023/08/03
Denoiser
Estimation
Federated Edge Learning
Maximum Likelihood Estimation
Neural Networks
Noise Measurement
Noise Reduction
Noisy Neural Network
Training
Wireless Communication
Wireless Transmission Of Neural Networks
Self-Weighted Quasi-Maximum Likelihood Estimators for a Class of MA-GARCH Model
Journal article
Xie, Danni, Liang, Xin, Liang, Ruilin. Self-Weighted Quasi-Maximum Likelihood Estimators for a Class of MA-GARCH Model[J]. Symmetry, 2022, 14(8), 1723.
Authors:
Xie, Danni
;
Liang, Xin
;
Liang, Ruilin
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
2.2
/
2.3
|
Submit date:2023/01/30
a Class Of Ma-garch Model
Asymptotic Normatity
The Consistency
The Self-weighted Quasi-maximum Likelihood Estimation
Forensic Analysis of JPEG-Domain Enhanced Images via Coefficient Likelihood Modeling
Journal article
Yang, Jianquan, Zhu, Guopu, Luo, Yao, Kwong, Sam, Zhang, Xinpeng, Zhou, Yicong. Forensic Analysis of JPEG-Domain Enhanced Images via Coefficient Likelihood Modeling[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(3), 1006-1019.
Authors:
Yang, Jianquan
;
Zhu, Guopu
;
Luo, Yao
;
Kwong, Sam
;
Zhang, Xinpeng
; et al.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
7
IF:
8.3
/
7.1
|
Submit date:2022/03/28
Coefficient Periodicity Analysis
Image Forensics
Jpeg-domain Enhancement
Maximum Likelihood Estimation
Quantization Step Estimation
Generalized inflated discrete models: A strategy to work with multimodal discrete distributions
Journal article
Cai, T., Xia, Y., Zhou, Y.. Generalized inflated discrete models: A strategy to work with multimodal discrete distributions[J]. Sociological Methods and Research, 2021, 365-400.
Authors:
Cai, T.
;
Xia, Y.
;
Zhou, Y.
Favorite
|
TC[WOS]:
11
TC[Scopus]:
13
IF:
6.5
/
6.0
|
Submit date:2022/06/22
Discrete Variable
Data Inflation
Data Heaping
Maximum Likelihood Estimation
Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspectral Remote Sensing Images
Journal article
Peng, Jiangtao, Li, Luoqing, Tang, Yuan Yan. Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspectral Remote Sensing Images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(6), 1790-1802.
Authors:
Peng, Jiangtao
;
Li, Luoqing
;
Tang, Yuan Yan
Favorite
|
TC[WOS]:
144
TC[Scopus]:
155
IF:
10.2
/
10.4
|
Submit date:2022/05/17
Classification
Hyperspectral Image (Hsi)
Inhomogeneous Pixels
Joint Sparse Representation (Jsr)
Maximum Likelihood Estimation (Mle)