UM

Browse/Search Results:  1-2 of 2 Help

Selected(0)Clear Items/Page:    Sort:
Shortening passengers' travel time: A dynamic metro train scheduling approach using deep reinforcement learning Journal article
Wang, Zhaoyuan, Pan, Zheyi, Chen, Shun, Ji, Shenggong, Yi, Xiuwen, Zhang, Junbo, Wang, Jingyuan, Gong, Zhiguo, Li, Tianrui, Zheng, Yu. Shortening passengers' travel time: A dynamic metro train scheduling approach using deep reinforcement learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 35(5), 5282-5295.
Authors:  Wang, Zhaoyuan;  Pan, Zheyi;  Chen, Shun;  Ji, Shenggong;  Yi, Xiuwen; et al.
Favorite | TC[WOS]:1 TC[Scopus]:3  IF:8.9/8.8 | Submit date:2022/05/17
Metro Systems  Spatio-temporal Data  Neural Network  Deep Reinforcement Learning  Urban Computing  
A Data-Driven Method for Dynamic OD Passenger Flow Matrix Estimation in Urban Metro Systems Conference paper
Jiexia Ye, JuanJuan Zhao, Liutao Zhang, ChengZhong Xu, Jun Zhang, Kejiang Ye. A Data-Driven Method for Dynamic OD Passenger Flow Matrix Estimation in Urban Metro Systems[C], 2020, 116-126.
Authors:  Jiexia Ye;  JuanJuan Zhao;  Liutao Zhang;  ChengZhong Xu;  Jun Zhang; et al.
Favorite | TC[Scopus]:1 | Submit date:2021/09/18
Metro Systems  Afc Data  Data Mining  Intelligent Transportation Systems  Dynamic Od Flow