UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
A new method for the frequency response curve and its unstable region of a strongly nonlinear oscillator Conference paper
Du, H. E., Er, G. K., Iu, V. P.. A new method for the frequency response curve and its unstable region of a strongly nonlinear oscillator[C]. Lacarbonara W., Balachandran B., Ma J., Tenreiro Machado J.A., Stepan G., Gewerbestrasse 11, 6330 Cham, Switzerland:Springer, 2020, 65-74.
Authors:  Du, H. E.;  Er, G. K.;  Iu, V. P.
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2022/08/26
Strong Nonlinearity  Multiple-scales Method  Frequency Response  Unstable Region  
A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators Journal article
Du,Hai En, Er,Guo Kang, Iu,Vai Pan. A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators[J]. International Journal of Computational Methods, 2019, 16(4).
Authors:  Du,Hai En;  Er,Guo Kang;  Iu,Vai Pan
Favorite | TC[WOS]:6 TC[Scopus]:5  IF:1.4/1.3 | Submit date:2021/03/09
Forced Vibration  Improved Solution  Multiple-scales Method  Perturbation Method  Strong Nonlinearity  
Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems Journal article
Du, H. E., Er, G. K., Iu, V. P.. Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems[J]. Nonlinear Dynamics, 2019, 1847-1863.
Authors:  Du, H. E.;  Er, G. K.;  Iu, V. P.
Favorite | TC[WOS]:12 TC[Scopus]:12 | Submit date:2022/08/26
Nonlinear Oscillator  Parameter Splitting  Multiple-scales Method  Strong Nonlinearity  Optimum Solution  
Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems Journal article
Du,Hai En, Er,Guo Kang, Iu,Vai Pan. Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems[J]. Nonlinear Dynamics, 2019, 96, 1847-1863.
Authors:  Du,Hai En;  Er,Guo Kang;  Iu,Vai Pan
Favorite | TC[WOS]:12 TC[Scopus]:12 | Submit date:2021/03/09
Multiple-scales Method  Nonlinear Oscillator  Optimum Solution  Parameter Splitting  Strong Nonlinearity  
A novel method for the forced vibrations of nonlinear oscillators Conference paper
Du, H. E., Er, G. K., Iu, V. P.. A novel method for the forced vibrations of nonlinear oscillators[C], 2018.
Authors:  Du, H. E.;  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/07/14
Perturbation Method  Multiple-scales Method  Strong Nonlinearity  Improved Method  
A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators Journal article
Du, H. E., Er, G. K., Iu, V. P.. A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators[J]. International Journal of Computational Methods, 2018, 1843010-1-1843010-17.
Authors:  Du, H. E.;  Er, G. K.;  Iu, V. P.
Favorite | TC[WOS]:6 TC[Scopus]:5 | Submit date:2022/08/26
Perturbation Method  Multiple-scales Method  Strong Nonlinearity  Improvedsolution  Forced Vibration.  
Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method Conference paper
Du, H., Er, G. K., Iu, V. P.. Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method[C], 2017.
Authors:  Du, H.;  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/08/26
Forced Vibration  Geometrically Nonlinear Cantilever Beam  Multiple-Scales  Lindstedt-Poincaré Method