UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Sampling formulas for non-bandlimited quaternionic signals Journal article
Xiaoxiao Hu, Kit Ian Kou. Sampling formulas for non-bandlimited quaternionic signals[J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16(6), 1559-1567.
Authors:  Xiaoxiao Hu;  Kit Ian Kou
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.0/1.8 | Submit date:2022/05/17
Quaternion Fourier Transform  Quaternion Linear Canonical Transform  Non-bandlimited Quaternionic Signal  
Sampling error analysis and some properties of non-bandlimited signals that are reconstructed by generalized sinc functions Journal article
Li Y., Chen Q., Qian T., Wang Y.. Sampling error analysis and some properties of non-bandlimited signals that are reconstructed by generalized sinc functions[J]. Applicable Analysis, 2014, 93(2), 305-315.
Authors:  Li Y.;  Chen Q.;  Qian T.;  Wang Y.
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2019/02/11
Generalized Sinc Function  Noisy Error  Non-bandlimited Signal  Reproducing Property  Sampling Theorem  Sobolev Smoothness  Truncated Error  
New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms Journal article
Liu Y.-L., Kou K.-I., Ho I.-T.. New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms[J]. Signal Processing, 2010, 90(3), 933.
Authors:  Liu Y.-L.;  Kou K.-I.;  Ho I.-T.
Favorite | TC[WOS]:50 TC[Scopus]:58 | Submit date:2018/10/30
Generalized Sinc Function  Linear Canonical Transform  Non-bandlimited Signal  Parameter M-hilbert Transform  Sampling Theorem