UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Constrained parameter-splitting multiple-scales method for the primary/sub-harmonic resonance of a cantilever-type vibration energy harvester Journal article
Du, Hai-En, Li, Lan-Juan, Er, Guo-Kang, Iu, vai Pan. Constrained parameter-splitting multiple-scales method for the primary/sub-harmonic resonance of a cantilever-type vibration energy harvester[J]. International Journal of Structural Stability and Dynamics, 2023, 23(20), 37.
Authors:  Du, Hai-En;  Li, Lan-Juan;  Er, Guo-Kang;  Iu, vai Pan
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2023/06/29
Perturbation Method  Geometrically Nonlinear Cantilever  Large Deflection  Floquet Theory  Forced Vibration  
Constrained parameter-splitting perturbation method for the improved solutions to the nonlinear vibrations of Euler–Bernoulli cantilevers Journal article
Du, Hai-En, Er, Guo-Kang, Iu, Vai Pan, Li, Lijuan. Constrained parameter-splitting perturbation method for the improved solutions to the nonlinear vibrations of Euler–Bernoulli cantilevers[J]. Nonlinear Dynamics, 2023, 111, 9025-9047.
Authors:  Du, Hai-En;  Er, Guo-Kang;  Iu, Vai Pan;  Li, Lijuan
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:5.2/4.8 | Submit date:2023/03/09
Nonlinear Cantilever  Parameter Splitting  Constraint  Strongly Nonlinear  Optimum Solution  Floquet Theory  
A Hybrid Method for the Primary Resonance Response of Harmonically Forced Strongly Nonlinear Oscillators Journal article
Du, Hai-En, Li, Lijuan, Er, Guo-Kang, Iu, Vai Pan. A Hybrid Method for the Primary Resonance Response of Harmonically Forced Strongly Nonlinear Oscillators[J]. International Journal of Structural Stability and Dynamics, 2022, 23(06), 2350067.
Authors:  Du, Hai-En;  Li, Lijuan;  Er, Guo-Kang;  Iu, Vai Pan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.0/2.9 | Submit date:2023/03/09
Perturbation Method  Duffing Oscillator  Nonlinear Cantilever  Floquet Theory  Strong Nonlinearity  Forced Vibration  
Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method Conference paper
Du, H., Er, G. K., Iu, V. P.. Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method[C], 2017.
Authors:  Du, H.;  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/08/26
Forced Vibration  Geometrically Nonlinear Cantilever Beam  Multiple-Scales  Lindstedt-Poincaré Method  
Nonlinear vibration of cantilever under the action of lateral harmonic excitations and axial load Conference paper
Er G.-K., Du H.. Nonlinear vibration of cantilever under the action of lateral harmonic excitations and axial load[C], 2015, 410-421.
Authors:  Er G.-K.;  Du H.
Favorite |  | Submit date:2019/02/13
Cantilever beam  Galerkin method  Hamilton principle  Nonlinear vibration  Runge-Kutta method